d with given degree sequences have been studied by several authors, see Janson and Luczak d d d. Let bp := max{p ∈ [0, 1] : hp = λp

G ∗

n, d with given degree sequences have been studied by several authors, see Janson and Luczak

[10, 11] and the references given there. We study the percolated G ∗

n, d

π by the exposion method presented in Section 1. For the k-core, the cleaning up stage is trivial: by definition, the k-core of G ∗ ˜ n, ˜ d does not contain any vertices of degree 1, so it is unaffected by the removal of all red vertices, and thus Core k G ∗

n, d

π = Core k G ∗ ˜ n, ˜ d . 4.1 Let, for 0 ≤ p ≤ 1, D p be the thinning of D obtained by taking D points and then randomly and independently keeping each of them with probability p. Thus, given D = d, D p ∼ Bid, p. Define, recalling the notation 2.21, hp := E D p 1[D p ≥ k] = ∞ X j=k ∞ X l= j j p l b l j p, 4.2 h 1 p := PD p ≥ k = ∞ X j=k ∞ X l= j p l b l j p. 4.3 Note that D p is stochastically increasing in p, and thus both h and h 1 are increasing in p, with h0 = h 1 0 = 0. Note further that h1 = P ∞ j=k j p j ≤ λ and h 1 1 = P ∞ j=k p j ≤ 1, with strict inequalities unless p j = 0 for all j = 1, . . . , k − 1 or j = 0, 1, . . . , k − 1, respectively. Moreover, hp = E D p − E D p 1[D p ≤ k − 1] = E D p − k −1 X j=1 j PD p = j = λp − k −1 X j=1 X l ≥ j j p l l j p j 1 − p l − j = λp − k −1 X j=1 p j j − 1 g j D 1 − p. 4.4 Since g D z is an analytic function in {z : |z| 1}, 4.4 shows that hp is an analytic function in the domain {p : |p − 1| 1} in the complex plane; in particular, h is analytic on 0, 1]. But not necessarily at 0, as seen by Example 4.13. Similarly, h 1 is analytic on 0, 1]. We will use the following result by Janson and Luczak [10], Theorem 2.3. Theorem 4.1 [10]. Suppose that Condition 2.1 holds. Let k ≥ 2 be fixed, and let Core ∗ k be the k-core of G ∗ n, d. Let bp := max{p ∈ [0, 1] : hp = λp 2 }. i If hp λp 2 for all p ∈ 0, 1], which is equivalent to bp = 0, then Core ∗ k has o p n vertices and o p n edges. Furthermore, if also k ≥ 3 and P n i=1 e αd i = On for some α 0, then Core ∗ k is empty w.h.p. ii If hp ≥ λp 2 for some p ∈ 0, 1], which is equivalent to bp ∈ 0, 1], and further bp is not a local maximum point of hp − λp 2 , then vCore ∗ k n p −→ h 1 bp 0, 4.5 102 v j Core ∗ k n p −→ PD bp = j = ∞ X l= j p l b l j bp, j ≥ k, 4.6 eCore ∗ k n p −→ hbp2 = λbp 2 2. 4.7 Remark 4.2. The result 4.6 is not stated explicitly in [10], but as remarked in [11, Remark 1.8], it follows immediately from the proof in [10] of 4.5. Cf. [5] for the random graph Gn, m.

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52