0 are both open × lim v ∈ Z and define the event, v

For l ≥ 2, B l is a event which involves the random variables u k , v k , V k for k = τ l−1 + 1, . . . , τ l . Using the Markov property, we have that the probability P B l | ∩ l−1 j=1 B j depends only on u τ l−1 , v τ l−1 , V τ l−1 . Furthermore, on the set ∩ l−1 j=1 B j , we note that n 2 l−1 1−ε ≤ ku τ l−1 − v τ l−1 k 1 ≤ n 2 l−1 1+ε , 0 ≤ u τ l−1 4 − v τ l−1 4 log n 2 l−1 and V τ l−1 = ;. Therefore we have that, for l ≥ 2, P B l | ∩ l−1 j=1 B j ≥ inf n 2l−11− ε ≤kz 1 −z 2 k 1 ≤n 2l−11+ ε , 0≤ z 1 4−z 2 4log n P B l | u τ l−1 , v τ l−1 , V τ l−1 = z 1 , z 2 , ; = inf n 2l−11− ε ≤kz 1 −z 2 k 1 ≤n 2l−11+ ε , 0≤ z 1 4−z 2 4log n P A n 2l−1 , ε | u , v , V = z 1 , z 2 , ; ≥ 1 − C 1 n −2 l−1 β 33 and since n 1− ε ≤ kuk 1 ≤ n 1+ ε , 0 ≤ u4 log n. P B 1 = P A n, ε | u , v , V = u, 0, ; ≥ 1 − C 1 n −β 34 Therefore, from 32, 33 and 34, we have, P {G is disconnected} ≥ P

u, 0 are both open × lim

i→∞ i Y l=1 1 − C 1 n −2 l−1 β 0. This completes the proof of the claim. We will work towards the proof of Lemma 3.1. Towards that, we introduce an independent version of the above process. In the same probability space, starting with two vertices u and v, and the same set of uniformly distributed random variables, define u I = max{u , v } and v I = min{u , v }. As in the construction at the beginning of the Section, we define u I n+1 = max{R I u I n , v I n } and v I n+1 = min{R I u I n , v I n } where R I is similar to R defined in the earlier construction except that the history part is completely ignored. The independent version tracks the two trees, emanating from the vertices u and v, with the condi- tion that the trees do not depend on the information history carried. The only constraint is that while growing the tree from a vertex, it waits for the tree from the other vertex to catch up, before taking the next step. Note that if the history set is empty, then both constructions match exactly. We define an event similar to A n, ε but in terms of { u I k , v I k : 1 ≤ k ≤ n 4 }. Fix n ≥ 1, 0 ε 13 and two open vertices

u, v ∈ Z and define the event,

B n, ε u I , v I :=    ku I k − v I k k 1 ≥ logn 2 for 1 ≤ k ≤ n 4 − 1, 0 ≤ u I k 4 − v I k 4 logn 2 for 1 ≤ k ≤ n 4 , n 21− ε ≤ ku I n 4 − v I n 4 k 1 ≤ n 21+ ε .    We will show that the following Lemma holds: Lemma 3.2. For 0 ε 13 there exist constants C 2 , γ 0 and n ≥ 1 such that, for all n ≥ n , inf n 1− ε ≤ku−vk 1 ≤n 1+ ε , 0≤ u4−v4 log n P B n, ε

u, v

≥ 1 − C 2 n −γ . 2180 First we prove Lemma 3.1, assuming Lemma 3.2. Proof of Lemma 3.1: Given 0 ε 13, fix n ≥ 1 from Lemma 3.2. Now fix n ≥ n and

u, v ∈ Z

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52