Main Results k = {v ∈ Z 0 = Λ 0 = ;. u v v : v ∈ V , and for some h ≥ 1, v ∈ Λ h, Λ h − 1 ∩ V = ; and U v w

1.1 Main Results

Before we describe the model we fix some notation which describe special regions in Z d . For u = u 1 , . . . , u d ∈ Z d and k ≥ 1 let m k u = u 1 , . . . , u d−1 , u d − k. Also, for k, h ≥ 1 define the regions H

u, k = {v ∈ Z

d : v d = u d − k and ||v − m k u|| L 1 ≤ k}, Λu, h = {v : v ∈ Hu, k for some 1 ≤ k ≤ h}, Λu = ∪ ∞ h=1 Λu, h and B u, h = {v : v ∈ Hu, k and ||v − m k u|| L 1 = k for some 1 ≤ k ≤ h} . We set H u, 0 = Λu, 0 = ;. u Figure 3: The region Λ u, 3. The seven vertices at the bottom constitute Hu, 3 while the six vertices on the two linear ‘boundary’ segments containing u constitute Bu, 3 We equip Ω = {0, 1} Z d with the σ-algebra F generated by finite-dimensional cylinder sets and a product probability measure P p defined through its marginals as P p {ω : ωu = 1} = 1 − P p {ω : ωu = 0} = p for u ∈ Z d and 0 ≤ p ≤ 1. 1 On another probability space Ξ, S , µ we accommodate the collection {U

u,v

: v ∈ Λu, u ∈ Z d } of i.i.d. uniform 0, 1 random variables. The random graph, defined on the product space Ω × Ξ, F × S , P := P p × µ, is given by the vertex set V := V ω, ξ = {u ∈ Z d : ωu = 1} for ω, ξ ∈ Ω × Ξ, and the almost surely unique edge set E = n u, v : u, v ∈ V , and for some h ≥ 1, v ∈ Λu, h, Λu, h − 1 ∩ V = ; and U

u,v

≤ U

u,w

for all w ∈ Λu, h ∩ V o . 2 The graph G = V , E is the object of our study here. The construction of the edge-set ensures that, almost surely, there is exactly one edge going ‘down’ and, as such, each connected component of the graph is a tree. Our first result discusses the structure of the graph and the second result discusses the structure of each connected component of the graph. Theorem 1. For 0 p 1 we have, almost surely 2163 i for d = 2, 3, the graph G is almost surely connected and consists of a connected tree ii for d ≥ 4 the graph G is almost surely disconnected and consists of infinitely components each of which is a tree. While the model guarantees that no river source terminates in the downward direction, this is not the case in the upward direction. This is our next result. Theorem 2. For d ≥ 2, the graph G contains no bi-infinite path almost surely. Our specific choice of ‘right-angled’ cones is not important for the results. Thus if, for some 1 a ∞ we had Λ a

u, h = ∪

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52