y ∈ R 0. getdoc8afd. 281KB Jun 04 2011 12:04:38 AM

Clearly, by stationarity again, for any t ∈ Z, P R = {x 1 + t, 0, x 2 + t, 0, . . . , x k + t, 0} = P R = {x 1 , 0, x 2 , 0, . . . , x k , 0} 0. 42 However, using 42 P |R | = k = X E={x 1 ,0,x 2 ,0,...,x k ,0} P R = E = ∞. This is obviously not possible, proving 41 . Thus, we have that P |R | = 0 + P|R | = ∞ = 1. Assume that P|R | = 0 1, so that P|R | = ∞ 0. Now, call a vertex x ∈ R t a branching point if there exist distinct points x 1 and x 2 such that x 1 , x 2 ∈ B 1 x and B n x 1 6= ;, B n x 2 6= ; for all n ≥ 1, i.e, x has at least two distinct infinite branches of ancestors. We first show that, if P|R | = ∞ 0, P Origin is a branching point 0. 43 Since P|R | = ∞ 0, we may fix two vertices x = x 1 , 0 and y = y 1 , 0 such that P

x, y ∈ R 0.

Suppose that x 1 y 1 and set M = y 1 − x 1 and x M = 0, M and y M = M , M . By translation invariance of the model, we must have, P x M , y M ∈ R M = Px, y ∈ R 0. Thus the event E 1 := {B n x M 6= ;, B n y M 6= ; for all n ≥ 1} has positive probability. Further this event depends only on sites { u := u 1 , u 2 : u 2 ≥ M }. Now, consider the event E 2 := {origin is open and all sites other than the origin in Λ x M , M ∪ Λy M , M is closed}. Clearly, the event E 2 depends only on a finite subset { u = u 1 , u 2 : 0 ≤ u 2 ≤ M − 1, |u 1 | ≤ 2M } and PE 2 0. Since E 1 and E 2 depend on disjoint sets of vertices, we have, P Origin is a branching point ≥ PE 1 ∩ E 2 = PE 1 PE 2 0. Now, we define C t as the set of all vertices with their second co-ordinates strictly larger than t, each vertex having infinite ancestry and its immediate offspring having the second co-ordinate at most t, i.e., C t = {y = y 1 , u ∈ V : u t, B n y 6= ; for n ≥ 1, and hy = x 1 , v, with v ≤ t}. Since every open vertex has a unique offspring, for each y ∈ C t , the edge joining y and hy intersects the line L t at a single point only, say I y t, t. We define, for all n ≥ 1, C t n := {y ∈ C t : 0 ≤ I y t n} and r t n = |C t n|. We show that Er t n ∞ and consequently r t n is finite almost surely. First, note that C t n = ∪ n j=1 {y ∈ C t : j − 1 ≤ I y t j}. 2186 Since the sets on the right hand side of above equality are disjoint, we have r t n = n X j=1 r j t where r j t = |{y ∈ C t : j − 1 ≤ I y t j}| for 1 ≤ j ≤ n. By the translation invariance of the model, it is clear that the marginal distribution of r j t , are the same for 1 ≤ j ≤ n. Thus, it is enough to show that Er 1 t ∞. Now, we observe that { y ∈ C t : 0 ≤ I y t 1} ⊆ U t := { y = y 1 , u ∈ V : u t, hy = x 1 , v, v ≤ t, 0 ≤ I y t 1}. The second set represents the vertices whose second co-ordinates are strictly larger than t, for each such vertex its immediate offspring having a second co-ordinate at most t and the edge connecting the vertex and its offspring intersecting the line L t at some point between 0 and 1. Note that we have relaxed the condition of having infinite ancestry of the vertices above. Set a i = 1 + 2i, for i = 1, 2, . . . and s i = P i j=1 a j . Here, a i is the number of vertices on the line L t+i which can possibly be included in the set U t . Now, if s i+1 ≥ |U t | s i , then some vertex x whose second co-ordinate is at least t + i + 1 will connect to some vertex y whose second co-ordinate is at most t. Thus, the probability of such an event is dominated by the probability of the event that the vertices in the cone Λ y up to the level x are closed. Since there are at least i 2 − 1 many vertices in this region, we have P s i+1 ≥ |U t | s i ≤ 1 − p i 2 −1 . Thus, E|U t | ∞. Now, consider C n and divide it into two parts, C 1 n and C 2 n where C 1 n = {y ∈ C n : y = y 1 , 1} and C 2 n = {y ∈ C n : y = y 1 , u, u 1}. We divide the set C 2 n into two further subsets. It is clear that for each y ∈ C 2

n, the edge joining y and hy intersects both the lines L

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52