v W getdoc8afd. 281KB Jun 04 2011 12:04:38 AM

where V n+1 = Λv n ∩ Λu n , u n 4 − Ru n 4 ∪ V n ∩ Λu n+1 . The process {T

u,v

k : k ≥ 0} tracks the position of trees after the k th step of the algorithm defined above along with the history carried at each stage. Clearly, if u k = v k for some k ≥ 1, the trees emanating from u and v meet while the event that the trees emanating from u and v never meet corresponds to the event that { u k 6= v k : k ≥ 1}. A formal construction of the above process is achieved in the following manner. We start with an independent collection of i.i.d. random variables, {W w 1

z, W

w 2 z : z ∈ Λw, w ∈ Z 4 }, defined on some probability space Ω, F , P, with each of these random variables being uniformly distributed on [0, 1]. Starting with two open vertices u and v, set u = maxu, v, v = minu, v and V = ;. For ω ∈ Ω, we define k u = k u ω as k u := min{k : W u 1 z p for some z ∈ Hu , k} and N u := { z ∈ Hu , k u : W u 1 z p}. We pick R u ∈ N u such that W u 2 Ru = min{W u 2 z : z ∈ N u }. Define, as earlier, u 1 = maxRu , v , v 1 = minRu , v and V 1 = Λv ∩ Λu , k u ∪ V ∩ Λu 1 = Λv ∩ Λu , k u . Further, for z ∈ V 1 , define W 1 H z = W u 1 z. Having defined { u k , v k , V k , {W k H z : z ∈ V k } : 1 ≤ k ≤ n}, we define u n+1 , v n+1 , V n+1 , {W n+1 H z : z ∈ V n+1 } as follows: for ω ∈ Ω, we define k u n = k u n ω as k u n := min{k : W n H z p for some z ∈ V n ∩ Hu n , k or W u n 1 z p for some z ∈ Hu n , k \ V n } and N u n := { z ∈ Hu n , k u n : W n H z p if z ∈ V n ∩ Hu n , k or W u n 1 z p if z ∈ Hu n , k \ V n }. We pick R u n ∈ N u n such that W u n 2 Ru n = min{W u n 2 z : z ∈ N u n }. Finally, define u n+1 = maxRu n , v n , v n+1 = minRu n , v n and V n+1 = Λv n ∩ Λu n , k u n ∪ V n ∩ Λu n . 2178 For z ∈ V n+1 , define W n+1 H z = W n H z if z ∈ V n ∩ Λu n W u n 1 z if Λ v n ∩ Λu n , k u n . This construction shows that the { u k , v k , V k , {W k H z : z ∈ V k } : k ≥ 0} is a Markov chain starting at u , v , ;, ;. A formal proof that this Markov chain describes the joint distribution of the trees emanating from the vertices u and v can be given in the same manner as in Lemma 2.1. For z ∈ Z 4 , define kzk 1 = |z1| + |z2| + |z3| where zi is the i th co-ordinate of z. Fix n ≥ 1, 0 ε 13 and two open vertices u, v and consider the trees emanating from u and v. Define the event, A n, ε = A n, ε u , v :=    u k 6= v k for 1 ≤ k ≤ n 4 − 1, V n 4 = ;, n 21− ε ≤ ku n 4 − v n 4 k 1 ≤ n 21+ ε , 0 ≤ u n 4 4 − v n 4 4 logn 2    for which we show that the following Lemma holds: Lemma 3.1. For 0 ε 13 there exist constants C 1 , β 0 and n ≥ 1 such that, for all n ≥ n , inf n 1− ε ≤ku−vk 1 ≤n 1+ ε , 0≤ u4−v4 log n P A n, ε | u , v , V = u, v, ; ≥ 1 − C 1 n −β . First we prove the result using the Lemma 3.1. First, for fixed 0 ε 13, we choose n from the above Lemma. Now, fix any n ≥ n and u such that n 1− ε ≤ kuk 1 ≤ n 1+ ε , 0 ≤ u4 log n. With positive probability, the vertices 0 and u are both open. On the event that both the vertices 0 and u are both open, we consider the trees emanating from u and v = 0. We want to show that P{u k 6= v k for k ≥ 1} 0. Let τ = 0 and for i ≥ 1, let τ i := n 4 + n 2 4 + · · · + n 2 i−1 4 . For i ≥ 1, define the event B i =    u k 6= v k , for τ i−1 k ≤ τ i , V τ i = ;, n 2 i 1−ε ≤ ku τ i − v τ i k 1 ≤ n 2 i 1+ε , and 0 ≤ u τ i 4 − v τ i 4 log n 2 i    . Then, we have P for all k ≥ 1, u k 6= v k = lim i→∞ P for 1 ≤ k ≤ τ i , u k 6= v k ≥ lim sup i→∞ P for 1 ≤ k ≤ τ i , u k 6= v k , and for 1 ≤ l ≤ i, V τ l = ;, n 2 l 1−ε ≤ ku τ l − v τ l k 1 ≤ n 2 l 1+ε and 0 ≤ u τ l 4 − v τ l 4 log n 2 l = lim sup i→∞ P ∩ i l=1 B l = lim sup i→∞ i Y l=2 P B l | ∩ l−1 j=1 B j PB 1 . 32 2179 For l ≥ 2, B l is a event which involves the random variables u k , v k , V k for k = τ l−1 + 1, . . . , τ l . Using the Markov property, we have that the probability P B l | ∩ l−1 j=1 B j depends only on u τ l−1 , v τ l−1 , V τ l−1 . Furthermore, on the set ∩ l−1 j=1 B j , we note that n 2 l−1 1−ε ≤ ku τ l−1 − v τ l−1 k 1 ≤ n 2 l−1 1+ε , 0 ≤ u τ l−1 4 − v τ l−1 4 log n 2 l−1 and V τ l−1 = ;. Therefore we have that, for l ≥ 2, P B l | ∩ l−1 j=1 B j ≥ inf n 2l−11− ε ≤kz 1 −z 2 k 1 ≤n 2l−11+ ε , 0≤ z 1 4−z 2 4log n P B l | u τ l−1 , v τ l−1 , V τ l−1 = z 1 , z 2 , ; = inf n 2l−11− ε ≤kz 1 −z 2 k 1 ≤n 2l−11+ ε , 0≤ z 1 4−z 2 4log n P A n 2l−1 , ε | u , v , V = z 1 , z 2 , ; ≥ 1 − C 1 n −2 l−1 β 33 and since n 1− ε ≤ kuk 1 ≤ n 1+ ε , 0 ≤ u4 log n. P B 1 = P A n, ε | u , v , V = u, 0, ; ≥ 1 − C 1 n −β 34 Therefore, from 32, 33 and 34, we have, P {G is disconnected} ≥ P

u, 0 are both open × lim

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52