y; λ is given by 22. Proposition 4. Let Λ y; λ defined by y; λ = |S y; λ| y; λ = u; λ

Asymptotic Independence in the Spectrum of the GUE 383 Remark 3. The kernel K n x, y is unbounded and one cannot consider its Fredholm determinant without caution. The kernel S n x, y is bounded in x since the kernel is zero if x is outside the compact closure of the set ∪ p i=1 ∆ i , but a priori unbounded in y. In all the forthcoming compu- tations, one may replace S n with the bounded kernel ˜ S n x, y = P p i,ℓ=1 λ i 1 ∆ i x1 ∆ ℓ yK n x, y and get exactly the same results. For notational convenience, we keep on working with S n . Proposition 3. Let p ≥ 1 be a fixed integer, ℓ = ℓ 1 , · · · , ℓ p ∈ N p and denote ∆ = ∆ 1 , · · · , ∆ p , where every ∆ i is a bounded Borel set. Assume that the ∆ i ’s are pairwise disjoint. Then the following identity holds true P ¦ N ∆ 1 = ℓ 1 , · · · , N ∆ p = ℓ p © = 1 ℓ 1 · · · ℓ p − ∂ ∂ λ 1 ℓ 1 · · · ‚ − ∂ ∂ λ p Œ ℓ p det 1 − S n λ, ∆ λ 1 =···=λ p =1 , 20 where S n λ, ∆ is the operator associated to the kernel defined in 19. Proof of Proposition 3 is postponed to Section 4.1.

3.1.3 Useful estimates for kernel S

n

x, y; λ, ∆ and its iterations Consider µ, ∆ and ∆

n as in Theorem 1. Assume moreover that n is large enough so that the Borel sets ∆ i,n ; 1 ≤ i ≤ p are pairwise disjoint. For i ∈ {1, · · · , p}, define κ i as κ i = ¨ 1 if − 2 µ i 2 2 3 if µ i = 2 . 21 Otherwise stated, κ 1 = κ p = 2 3 and κ i = 1 for 1 i p. Let λ ∈ C p . With a slight abuse of notation, denote by S n

x, y; λ the kernel

S n

x, y; λ := S

n

x, y; λ, ∆

n . 22 For 1 ≤ m, ℓ ≤ p and Λ ⊂ C p , define M mℓ,n Λ := sup λ ∈Λ sup x, y∈∆ m,n ∆ ℓ,n S n

x, y; λ ,

23 where S n

x, y; λ is given by 22. Proposition 4. Let Λ

⊂ C p be a compact set. There exist two constants R := RΛ 0 and C := CΛ 0, independent from n, such that for n large enough, ¨ M ii,n Λ ≤ R −1 n κ i , 1 ≤ i ≤ p M i j,n Λ ≤ C n 1 − κi +κj 2 , 1 ≤ i, j ≤ p, i 6= j . 24 Proposition 4 is proved in Section 4.2. Consider the iterated kernel |S n | k

x, y; λ defined by

¨ |S n | 1 x, y; λ = |S n x, y; λ| |S n | k

x, y; λ =

R R k −1 |S n x, u; λ||S n | k−1

u, y; λ du k

≥ 2 , 25 384 Electronic Communications in Probability where S n

x, y; λ is given by 22. The next estimates will be stated with λ ∈ C

p fixed. Note that |S n | k is nonnegative and write Z R k −1 |S n x, u 1 ; λS n u 1 , u 2 ; λ · · · S n u k −1 , y; λ |du 1 · · · du k −1 . As previously, define for 1 ≤ m, ℓ ≤ p M k mℓ,n λ := sup x, y∈∆ m,n ∆ ℓ,n |S n | k

x, y; λ .

The following estimates hold true Proposition 5. Consider the compact set Λ = {λ} and the associated constants R = Rλ and C = Cλ as given by Prop. 4. Let β 0 be such that β R −1 and consider ε ∈ 0, 1 3 . There exists an integer N := N β, ε such that for every n ≥ N and for every k ≥ 1, M k mm,n λ ≤ β k n κ m , 1 ≤ m ≤ p M k mℓ,n λ ≤ Cβ k −1 n 1+ε − κm+κℓ 2 , 1 ≤ m, ℓ ≤ p, m 6= ℓ . 26 Proposition 5 is proved in Section 4.3.

3.2 End of proof

Consider µ, ∆ and ∆ n as in Theorem 1. Assume moreover that n is large enough so that the Borel sets ∆ i,n ; 1 ≤ i ≤ p are pairwise disjoint. As previously, denote S n

x, y; λ = S

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52