Proof of Proposition 3 y; λ, ∆ is the kernel defined in 19. As the operator S Proof of Proposition 4

390 Electronic Communications in Probability 4 Remaining proofs

4.1 Proof of Proposition 3

Denote by E n ℓ, ∆ the probability that for every i ∈ {1, · · · , p}, the set ∆ i contains exactly ℓ i eigenvalues E n ℓ, ∆ = P ¦ N ∆ 1 = ℓ 1 , · · · , N ∆ p = ℓ p © . 39 Let P n m be the set of subsets of {1, · · · , n} with exactly m elements. If A ∈ P n m, denote by A c its complementary subset in {1, · · · , n}. The mere definition of E n ℓ, ∆ yields E n ℓ, ∆ = Z R n X A 1 , ··· ,A p ∈ P n ℓ 1 ···P n ℓ p p Y k=1    Y i ∈A k 1 ∆ k x i Y j ∈A c k 1 − 1 ∆ k x j    p n x 1 · · · x n d x 1 · · · d x n . Using the following formula 1 ℓ − d dλ ℓ n Y i=1 1 − λα i = X A ∈P n ℓ Y i ∈A α i Y j ∈A c 1 − λα j , we obtain E n ℓ, ∆ = 1 ℓ 1 · · · ℓ p − ∂ ∂ λ 1 ℓ 1 · · · ‚ − ∂ ∂ λ p Œ ℓ p Γλ, ∆ λ 1 =···=λ p =1 , where Γλ, ∆ = Z R n n Y i=1 1 − λ 1 1 ∆ 1 x i · · · 1 − λ p 1 ∆ p x i p n x 1 · · · x n d x 1 · · · d x n . Expanding the inner product and using the fact that the ∆ k ’s are pairwise disjoint yields 1 − λ 1 1 ∆ 1 x · · · 1 − λ p 1 ∆ p x = 1 − p X k=1 λ k 1 ∆ k x . Thus Γλ, ∆ = Z R n n Y i=1 1 − p X k=1 λ k 1 ∆ k x i p n x 1 · · · x n d x 1 · · · d x n , a = 1 + Z R n n X m=1 −1 m X A ∈P n m Y i ∈A p X k=1 λ k 1 ∆ k x i p n x 1 · · · x n d x 1 · · · d x n , = 1 + n X m=1 −1 m X A ∈P n m Z R n Y i ∈A p X k=1 λ k 1 ∆ k x i p n x 1 · · · x n d x 1 · · · d x n , b = 1 + n X m=1 −1 m n m Z R n m Y i=1 p X k=1 λ k 1 ∆ k x i p n x 1 · · · x n d x 1 · · · d x n , c = 1 + n X m=1 −1 m m Z R m m Y i=1 p X k=1 λ k 1 ∆ k x i det ¦ K n x i , x j © 1 ≤i, j≤m d x 1 · · · d x m , Asymptotic Independence in the Spectrum of the GUE 391 where a follows from the expansion of Q i € 1 − P k λ k 1 ∆ k x i Š , b from the fact that the inner integral in the third line of the previous equation does not depend upon E due to the in- variance of p n with respect to any permutation of the x i ’s, and c follows from the determinantal representation 15. Therefore, Γλ, ∆ writes Γλ, ∆ = 1 + n X m=1 −1 m m Z R m det ¦ S n x i , x j ; λ, ∆ © 1 ≤i, j≤m d x 1 · · · d x m , 40 where S n

x, y; λ, ∆ is the kernel defined in 19. As the operator S

n λ, ∆ has finite rank n, 40 coincides with the Fredholm determinant det1 − S n λ, ∆ see [ 17 ] for details. Proof of Proposition 3 is completed.

4.2 Proof of Proposition 4

In the sequel, C 0 will be a constant independent from n, but whose value may change from line to line. First consider the case i = j. Denote by S µ i x, y the following limiting kernel S µ i x, y :=            sin πρµ i x − y πx − y if − 2 µ i 2 AixAi ′ y − Ai yAi ′ x x − y if µ i = 2 Ai −xAi ′ − y − Ai− yAi ′ −x −x + y if µ i = −2 . Proposition 1 implies that n −κ i K n µ i + xn κ i , µ i + yn κ i converges uniformly to S µ i x, y on every compact subset of R 2 , where κ i is defined by 21. Moreover, S µ i x, y being bounded on every compact subset of R 2 , there exists a constant C i such that M ii,n Λ = ‚ sup λ ∈Λ |λ i | Œ sup x, y∈∆ 2 i,n K n x, y , = ‚ sup λ ∈Λ |λ i | Œ sup x, y∈∆ 2 i K n  µ i + x n κ i , µ i + y n κ i ‹ , ≤ ‚ sup λ ∈Λ |λ i | Œ n κ i sup x, y∈∆ 2 i 1 n κ i K n  µ i + x n κ i , µ i + y n κ i ‹ − S µ i x, y + sup x, y∈∆ 2 i S µ i x, y , ≤ n κ i C i . 41 It remains to take R as R −1 = maxC 1 , · · · , C p to get the desired estimate. Consider now the case where i 6= j. Using notation κ i , inequalities 12 and 13 can be conve- niently merged as follows There exists a constant C such that sup x ∈∆ i,n ψ n n −k x ≤ n 1 −κi 2 C 42 392 Electronic Communications in Probability for 1 ≤ i ≤ p and k = 0, 1. For n large enough, we obtain, using 9 M i j,n Λ a ≤ ‚ sup λ ∈Λ |λ i | Œ sup x, y∈∆ i,n ∆ j,n |ψ n n x||ψ n n −1 y| + |ψ n n y||ψ n n −1 x| |x − y| , b ≤ ‚ sup λ ∈Λ |λ i | Œ n 1 −κi 2 + 1 −κ j 2 2C 2 inf x, y∈∆ i,n ∆ j,n |x − y| , c ≤ C n 1 − κi +κj 2 , where a follows from 9, b from 42 and c from the fact that lim inf n →∞ inf x, y∈∆ i,n ∆ j,n |x − y| = |µ i − µ j | 0 . Proposition 4 is proved.

4.3 Proof of Proposition 5

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52