Application: Fluctuations of the ratio of the extreme eigenvalues in y; λ, ∆ and its iterations Consider µ, ∆ and ∆ y; λ the kernel y; λ := S y; λ, ∆ y; λ ,

380 Electronic Communications in Probability where by equations 1, 3 and 4 ε n α := −P n Π−α, x , n 2 3 λ max − 2 y o − P ¦ Π−α, x , ˜ Π y, α © − P n n 2 3 λ min + 2 x , ˜ Π y, α o + P ¦ N ∆ 1,n = 0 © P ¦ ˜ Π y, α © + P {Π−α, x} P ¦ N ∆ 2,n = 0 © − P {Π−α, x} P ¦ ˜ Π y, α © . Using the triangular inequality, we obtain: |ε n α| ≤ 6 max € P {Π−α, x} , P ¦ ˜ Π y, α ©Š . As { Π−α, x } ⊂ {n 2 3 λ min + 2 −α}, we have P {Π−α, x } ≤ P{n 2 3 λ min + 2 −α} −−→ n →∞ F − GU E −α −−→ α→∞ 0 . We can apply the same arguments to { ˜ Π y, α } ⊂ {n 2 3 λ max − 2 α}. We thus obtain: lim α→∞ lim sup n →∞ |ε n α| = 0 . 6 The difference P ¦ N ∆ 1,n = 0 , N ∆ 2,n = 0 © −P ¦ N ∆ 1,n = 0 © P ¦ N ∆ 2,n = 0 © in the right ­- hand side of 5 converges to zero as n → ∞ by Theorem 1 for every α large enough. We therefore obtain lim sup n →∞ |u n | = lim sup n →∞ |ε n α| . The lefthand side of the above equation is a constant w.r.t. α while the second term whose behaviour for small α is unknown converges to zero as α → ∞ by 6. Thus, lim n →∞ u n = 0. The mere definition of u n together with Tracy and Widom fluctuation results yields lim n →∞ P n n 2 3 λ min + 2 x , n 2 3 λ max − 2 y o = € 1 − F − GU E x Š F + GU E y . This completes the proof of Corollary 1.

2.2 Application: Fluctuations of the ratio of the extreme eigenvalues in

the GUE As a simple consequence of Corollary 1, we can easily describe the fluctuations of the ratio λ max λ min . The counterpart of such a result to Gaussian Wishart matrices is of interest in digital communication see [ 4 ] for an application in digital signal detection. Corollary 2. Let M be a nn matrix from the GUE. Denote by λ min and λ max its smallest and largest eigenvalues, then n 2 3 λ max λ min + 1 D −−→ n →∞ − 1 2 λ − + λ + , where D − → denotes convergence in distribution, λ − and λ + are independent random variable with respective distribution F − GU E and F + GU E . Asymptotic Independence in the Spectrum of the GUE 381 Proof. The proof is a mere application of Slutsky’s lemma see for instance [ 18 , Lemma 2.8 ]. Write n 2 3 λ max λ min + 1 = 1 λ min h n 2 3 λ max − 2 + n 2 3 λ min + 2 i . 7 Now, λ min −1 goes almost surely to -2 as n → ∞, and n 2 3 λ max − 2 + n 2 3 λ min + 2 converges in distribution to the convolution of F − GU E and F + GU E by Corollary 1. Thus, Slutsky’s lemma yields the convergence in distribution of the right-hand side of 7 to − 1 2 λ − + λ + with λ − and λ + independent and distributed according to F − GU E and F + GU E . Proof of Corollary 2 is completed. 3 Proof of Theorem 1

3.1 Useful results

3.1.1 Kernels

Let {H k x} k ≥0 be the classical Hermite polynomials H k x := e x 2 € − d d x Š k e −x 2 and consider the function ψ n k x defined for 0 ≤ k ≤ n − 1 by: ψ n k x :=  n 2 ‹ 1 4 e − nx2 4 2 k k p π 1 2 H k ‚Ç n 2 x Œ . Denote by K n x, y the following kernel on R 2 K n x, y := n −1 X k=0 ψ n k xψ n k y , 8 = ψ n n xψ n n −1 y − ψ n n yψ n n −1 x x − y . 9 Equation 9 is obtained from 8 by the Christoffel-Darboux formula. We recall the two well- known asymptotic results Proposition 1. a Bulk of the spectrum. Let µ ∈ −2, 2. ∀x, y ∈ R 2 , lim n →∞ 1 n K n  µ + x n , µ + y n ‹ = sin πρµx − y πx − y , 10 where ρµ = p 4 −µ 2 2π . Furthermore, the convergence 10 is uniform on every compact set of R 2 . b Edge of the spectrum. ∀x, y ∈ R 2 , lim n →∞ 1 n 23 K n  2 + x n 23 , 2 + y n 23 ‹ = AixAi ′ y − Ai yAi ′ x x − y , 11 where Aix is the Airy function. Furthermore, the convergence 11 is uniform on every compact set of R 2 . 382 Electronic Communications in Probability We will need as well the following result on the asymptotic behavior of functions ψ n k . Proposition 2. Let µ ∈ −2, 2, k ∈ {0, 1} and denote by K a compact set of R. a Bulk of the spectrum. There exists a constant C such that sup x ∈K ψ n n −k  µ + x n ‹ ≤ C . 12 b Edge of the spectrum. There exists a constant C such that sup x ∈K ψ n n −k  2 x n 23 ‹ ≤ n 16 C . 13 The proof of these results can be found in [ 11 , Chapter 7 ], see also [ 1 , Chapter 3 ].

3.1.2 Determinantal representations, Fredholm determinants

There are determinantal representations using kernel K n x, y for the joint density p n of the eigenvalues λ n i ; 1 ≤ i ≤ n, and for its marginals see for instance [ 10 , Chapter 6 ]: p n x 1 , · · · , x n = 1 n det ¦ K n x i , x j © 1 ≤i, j≤n , 14 Z R n −m p n x 1 , · · · , x n d x m+1 · · · d x n = n − m n det ¦ K n x i , x j © 1 ≤i, j≤m m ≤ n . 15 Definition 1. Consider a linear operator S defined for any bounded integrable function f : R → R by S f : x 7→ Z R Sx, y f yd y , where Sx, y is a bounded integrable Kernel on R 2 → R with compact support. The Fredholm determinant Dz associated with operator S is defined as follows ∀z ∈ C, Dz := det1 − zS = 1 + ∞ X k=1 −z k k Z R k det ¦ Sx i , x j © 1 ≤i, j≤k d x 1 · · · d x k . 16 It is in particular an entire function and its logarithmic derivative has a simple expression [ 17 , Section 2.5] given by D ′ z Dz = − ∞ X k=0 T k + 1z k , 17 where T k = Z R k Sx 1 , x 2 Sx 2 , x 3 · · · Sx k , x 1 d x 1 · · · d x k . 18 For details related to Fredholm determinants, see for instance [ 14 , 17 ]. The following kernel will be of constant use in the sequel S n

x, y; λ, ∆ :=

p X i=1 λ i 1 ∆ i xK n x, y, 19 where λ = λ 1 , · · · , λ p ∈ R p or λ ∈ C p , depending on the need, and ∆ = ∆ 1 , · · · , ∆ p is a collection of p bounded Borel sets in R. Asymptotic Independence in the Spectrum of the GUE 383 Remark 3. The kernel K n x, y is unbounded and one cannot consider its Fredholm determinant without caution. The kernel S n x, y is bounded in x since the kernel is zero if x is outside the compact closure of the set ∪ p i=1 ∆ i , but a priori unbounded in y. In all the forthcoming compu- tations, one may replace S n with the bounded kernel ˜ S n x, y = P p i,ℓ=1 λ i 1 ∆ i x1 ∆ ℓ yK n x, y and get exactly the same results. For notational convenience, we keep on working with S n . Proposition 3. Let p ≥ 1 be a fixed integer, ℓ = ℓ 1 , · · · , ℓ p ∈ N p and denote ∆ = ∆ 1 , · · · , ∆ p , where every ∆ i is a bounded Borel set. Assume that the ∆ i ’s are pairwise disjoint. Then the following identity holds true P ¦ N ∆ 1 = ℓ 1 , · · · , N ∆ p = ℓ p © = 1 ℓ 1 · · · ℓ p − ∂ ∂ λ 1 ℓ 1 · · · ‚ − ∂ ∂ λ p Œ ℓ p det 1 − S n λ, ∆ λ 1 =···=λ p =1 , 20 where S n λ, ∆ is the operator associated to the kernel defined in 19. Proof of Proposition 3 is postponed to Section 4.1.

3.1.3 Useful estimates for kernel S

n

x, y; λ, ∆ and its iterations Consider µ, ∆ and ∆

n as in Theorem 1. Assume moreover that n is large enough so that the Borel sets ∆ i,n ; 1 ≤ i ≤ p are pairwise disjoint. For i ∈ {1, · · · , p}, define κ i as κ i = ¨ 1 if − 2 µ i 2 2 3 if µ i = 2 . 21 Otherwise stated, κ 1 = κ p = 2 3 and κ i = 1 for 1 i p. Let λ ∈ C p . With a slight abuse of notation, denote by S n

x, y; λ the kernel

S n

x, y; λ := S

n

x, y; λ, ∆

n . 22 For 1 ≤ m, ℓ ≤ p and Λ ⊂ C p , define M mℓ,n Λ := sup λ ∈Λ sup x, y∈∆ m,n ∆ ℓ,n S n

x, y; λ ,

23 where S n

x, y; λ is given by 22. Proposition 4. Let Λ

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52