Kernels Determinantal representations, Fredholm determinants

Asymptotic Independence in the Spectrum of the GUE 381 Proof. The proof is a mere application of Slutsky’s lemma see for instance [ 18 , Lemma 2.8 ]. Write n 2 3 λ max λ min + 1 = 1 λ min h n 2 3 λ max − 2 + n 2 3 λ min + 2 i . 7 Now, λ min −1 goes almost surely to -2 as n → ∞, and n 2 3 λ max − 2 + n 2 3 λ min + 2 converges in distribution to the convolution of F − GU E and F + GU E by Corollary 1. Thus, Slutsky’s lemma yields the convergence in distribution of the right-hand side of 7 to − 1 2 λ − + λ + with λ − and λ + independent and distributed according to F − GU E and F + GU E . Proof of Corollary 2 is completed. 3 Proof of Theorem 1

3.1 Useful results

3.1.1 Kernels

Let {H k x} k ≥0 be the classical Hermite polynomials H k x := e x 2 € − d d x Š k e −x 2 and consider the function ψ n k x defined for 0 ≤ k ≤ n − 1 by: ψ n k x :=  n 2 ‹ 1 4 e − nx2 4 2 k k p π 1 2 H k ‚Ç n 2 x Œ . Denote by K n x, y the following kernel on R 2 K n x, y := n −1 X k=0 ψ n k xψ n k y , 8 = ψ n n xψ n n −1 y − ψ n n yψ n n −1 x x − y . 9 Equation 9 is obtained from 8 by the Christoffel-Darboux formula. We recall the two well- known asymptotic results Proposition 1. a Bulk of the spectrum. Let µ ∈ −2, 2. ∀x, y ∈ R 2 , lim n →∞ 1 n K n  µ + x n , µ + y n ‹ = sin πρµx − y πx − y , 10 where ρµ = p 4 −µ 2 2π . Furthermore, the convergence 10 is uniform on every compact set of R 2 . b Edge of the spectrum. ∀x, y ∈ R 2 , lim n →∞ 1 n 23 K n  2 + x n 23 , 2 + y n 23 ‹ = AixAi ′ y − Ai yAi ′ x x − y , 11 where Aix is the Airy function. Furthermore, the convergence 11 is uniform on every compact set of R 2 . 382 Electronic Communications in Probability We will need as well the following result on the asymptotic behavior of functions ψ n k . Proposition 2. Let µ ∈ −2, 2, k ∈ {0, 1} and denote by K a compact set of R. a Bulk of the spectrum. There exists a constant C such that sup x ∈K ψ n n −k  µ + x n ‹ ≤ C . 12 b Edge of the spectrum. There exists a constant C such that sup x ∈K ψ n n −k  2 x n 23 ‹ ≤ n 16 C . 13 The proof of these results can be found in [ 11 , Chapter 7 ], see also [ 1 , Chapter 3 ].

3.1.2 Determinantal representations, Fredholm determinants

There are determinantal representations using kernel K n x, y for the joint density p n of the eigenvalues λ n i ; 1 ≤ i ≤ n, and for its marginals see for instance [ 10 , Chapter 6 ]: p n x 1 , · · · , x n = 1 n det ¦ K n x i , x j © 1 ≤i, j≤n , 14 Z R n −m p n x 1 , · · · , x n d x m+1 · · · d x n = n − m n det ¦ K n x i , x j © 1 ≤i, j≤m m ≤ n . 15 Definition 1. Consider a linear operator S defined for any bounded integrable function f : R → R by S f : x 7→ Z R Sx, y f yd y , where Sx, y is a bounded integrable Kernel on R 2 → R with compact support. The Fredholm determinant Dz associated with operator S is defined as follows ∀z ∈ C, Dz := det1 − zS = 1 + ∞ X k=1 −z k k Z R k det ¦ Sx i , x j © 1 ≤i, j≤k d x 1 · · · d x k . 16 It is in particular an entire function and its logarithmic derivative has a simple expression [ 17 , Section 2.5] given by D ′ z Dz = − ∞ X k=0 T k + 1z k , 17 where T k = Z R k Sx 1 , x 2 Sx 2 , x 3 · · · Sx k , x 1 d x 1 · · · d x k . 18 For details related to Fredholm determinants, see for instance [ 14 , 17 ]. The following kernel will be of constant use in the sequel S n

x, y; λ, ∆ :=

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52