Normal approximation of sums of single and double integrals

5.2 Normal approximation of sums of single and double integrals

We will deduce a bound for the quantity E[hF n ] − E[hZ] where Z ∼ N 0,1 and F n is given by 5.51 from the following result, which can be seen as a particular case of Theorem 3.1. Proposition 5.1. Sum of a single and a double integral Let F = J 1 f + J 2 g with f ∈ ℓ 2 Z and g ∈ ℓ 2 Z ◦2 . Assume that P i ∈Z gi, k ∞ for all k ∈ Z. Also, suppose for simplicity that VarF = 1, and let h ∈ C 2 b . Then E[hF] − E[hZ] 6 min4khk ∞ , kh ′′ k ∞ 2 p 2 kg ⋆ 1 1 g 1 ∆ 2 k ℓ 2 Z ⊗2 + 3k f ⋆ 1 1 g k ℓ 2 Z + 160 3 kh ′′ k ∞ X k ∈Z    f 4 k + 16 X i ∈Z |gi, k| 4    . 5.53 Remark 5.2. By applying successively Fubini and Cauchy-Schwarz theorems, one has that k f ⋆ 1 1 g k 2 ℓ 2 Z = X i, j ∈Z f i f j g ⋆ 1 1 gi, j 6 k f k 2 ℓ 2 Z kg ⋆ 1 1 g k ℓ 2 Z ⊗2 . 5.54 This inequality has an interesting consequence. Suppose indeed that the sequences J 1 f n and J 2 g n , n 1, are such that, as n → ∞: a k f n k ℓ 2 Z → 1, b 2kg n k 2 ℓ 2 Z ⊗2 → 1, c P k ∈Z f 4 n k → 0, d P k ∈Z €P i ∈Z |g n i, k| Š 4 → 0, and e kg n ⋆ 1 1 g n k ℓ 2 Z ⊗2 → 0. Then the estimate 5.54 and Proposition 5.1 imply that, for every α, β 6= 0, 0, the sequence αJ 1 f n + β J 2 g n p α 2 + β 2 , n 1, converges in law to Z ∼ N 0, 1, and therefore that the vectors J 1 f n , J 2 g n , n 1, jointly converge in law towards a two-dimensional centered i.i.d. Gaussian vector with unit variances. Note that each one of conditions a–e involves separately one of the two kernels f n and g n . See [27] and [31, Section 6], respectively, for several related results in a Gaussian and in a Poisson framework. Proof of Proposition 5.1. Firstly, observe that D k F = 2J 1 g ·, k + f k = 2 P i ∈Z gi, kX i + f k so that, using a + b 4 6 8a 4 + b 4 , E D k F | 4 6 128E X i ∈Z gi, kX i 4 + 8 f 4 k 6 128 X i ∈Z gi, k 4 + 8 f 4 k ∞. We are thus left to bound B 1 and B 2 in Theorem 3.1, taking into account the particular form of F . We have −L −1 F = 1 2 J 2 g + J 1 f so that −D k L −1 F = J 1 g ·, k + f k. Consequently, with the multiplication formula 2.11, we get 〈DF, −DL −1 F 〉 ℓ 2 Z = 2 X k ∈Z J 1 g ·, k 2 + 3 X k ∈Z f kJ 1 g ·, k + k f k 2 ℓ 2 Z = 2 X k ∈Z J 2 g ·, k ⊗ g·, k1 ∆ 2 + 3 X k ∈Z f kJ 1 g ·, k + k f k 2 ℓ 2 Z + 2kgk 2 ℓ 2 Z ⊗2 = 2J 2 g ⋆ 1 1 g 1 ∆ 2 + 3J 1 f ⋆ 1 1 g + k f k 2 ℓ 2 Z + 2kgk 2 ℓ 2 Z ⊗2 1727 so that E 〈DF,−DL −1 F 〉 ℓ 2 Z − VarF 2 = E 2J 2 g ⋆ 1 1 g 1 ∆ 2 + 3J 1 f ⋆ 1 1 g 2 = 8 kg ⋆ 1 1 g 1 ∆ 2 k 2 ℓ 2 Z ⊗2 + 9k f ⋆ 1 1 g k 2 ℓ 2 Z . Hence, B 1 6 q 8 kg ⋆ 1 1 g 1 ∆ 2 k 2 ℓ 2 Z ⊗2 + 9k f ⋆ 1 1 g k 2 ℓ 2 Z 6 2 p 2 kg ⋆ 1 1 g 1 ∆ 2 k ℓ 2 Z ⊗2 + 3k f ⋆ 1 1 g k ℓ 2 Z . Now, let us consider B 2 . We have D k F 6 |f k| + 2 X i ∈Z |gi, k|. Similarly, D k L −1 F = f k + J 1 g ·, k = f k + X i ∈Z gi, kX i 6 | f k| + X i ∈Z |gi, k| 6 | f k| + 2 X i ∈Z |gi, k|. Still using a + b 4 6 8a 4 + b 4 , we deduce X k ∈Z D k L −1 F × D k F 3 6 X k ∈Z | f k| + 2 X i ∈Z |gi, k| 4 6 8 X k ∈Z    f 4 k + 16 X i ∈Z |gi, k| 4    . Hence B 2 6 160 3 X k ∈Z    f 4 k + 16 X i ∈Z |gi, k| 4    and the desired conclusion follows by applying Theorem 3.1.

5.3 Bounds for infinite 2-runs

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52