Main bound getdocb915. 413KB Jun 04 2011 12:04:53 AM

ii If h ∈ C 2 b , then 2.23 has a solution f h which is thrice differentiable and such that k f ′ h k ∞ 6 4 khk ∞ , k f ′′ h k ∞ 6 2 kh ′ k ∞ and k f ′′′ h k ∞ 6 2 kh ′′ k ∞ . We also have k f ′ h k 6 kh ′′ k ∞ . Now fix a function h ∈ C 2 b , consider a Gaussian random variable Z ∼ N 0, 1, and let F be a generic square integrable random variable. Integrating both sides of 2.23 with respect to the law of F gives E[hF] − E[hZ] = E[f ′ h F − F f h F ] 2.25 with f h the function given in Lemma 2.15. In the following sections we will show that, if F is a functional of the infinite Rademacher sequence X , then the quantity in the RHS of 2.25 can be successfully assessed by means of discrete Malliavin operators. Remark 2.16. Plainly, if the sequence F n , n 1, is such that E[hF n ] − E[hZ] → 0 for every h ∈ C 2 b , then F n Law → Z. 3 General Bounds for Rademacher functionals

3.1 Main bound

The following result combines Proposition 2.14 with Lemma 2.15-ii and Relation 2.25 in order to estimate expressions of the type |E[hF] − E[hZ]|, where F is a square integrable functional of the infinite Rademacher sequence X , and Z ∼ N 0, 1. Theorem 3.1. Let F ∈ domD be centered and such that P k E D k F 4 ∞. Consider a function h ∈ C 2 b and let Z ∼ N 0, 1. Then, |E[hF] − E[hZ]| 6 min4khk ∞ , kh ′′ k ∞ B 1 + kh ′′ k ∞ B 2 , 3.26 where B 1 = E 1 − 〈DF,−DL −1 F 〉 ℓ 2 N 6 Æ E 1 − 〈DF, −DL −1 F 〉 ℓ 2 N 2 ; B 2 = 20 3 E h¬ |DL −1 F |, |DF| 3 ¶ ℓ 2 N i . 3.27 Proof. Since h ∈ C 2 b , Equality 2.25 holds. Observe that, since the first two derivatives of f h are bounded, one has that f h F ∈ domD this fact can be proved by using a Taylor expansion, as well as the assumptions on DF and the content of the first point of Remark 2.11. Using Lemma 2.12, one deduces that E f ′ h F − F f h F = E f ′ h F − 〈D f h F , −DL −1 F 〉 ℓ 2 N . We now use again the fact that f ′′ h is bounded: as an application of the first point of Lemma 2.13, we deduce therefore that E ” D k L −1 F × f ′′ h F + k + f ′′ h F − k D k F 2 X k — = 0, k 1; in particular, the boundedness of f ′′ h , along with the fact that E |D k F | 4 ∞ and Lemma 2.13-3, ensure that the previous expectation is well-defined. Finally, the desired conclusion follows from the chain rule proved in Proposition 2.14, as well as the bounds on k f ′ h k ∞ and k f ′′′ h k ∞ stated in Lemma 2.15-ii. 1716 Remark 3.2. 1. The requirement that P k E D k F 4 ∞ is automatically fulfilled whenever F belongs to a finite sum of chaoses. This can be deduced from the hypercontractive inequalities stated e.g. in [21, Ch. 6]. 2. Since we are considering random variables possibly depending on the whole sequence X and having an infinite chaotic expansion, the expectation in 3.27 may actually be infinite. 3. Fix q 1 and let F have the form of a multiple integral of the type F = J q f , where f ∈ ℓ 2 N ◦q . Then, one has that 〈DF, −DL −1 F 〉 ℓ 2 N = 1 q kDFk 2 ℓ 2 N , 3.28 〈|DL −1 F |, |DF| 3 〉 ℓ 2 N = 1 q kDFk 4 ℓ 4 N . 3.29 4. Let G be an isonormal Gaussian process see [19] or [29] over some separable Hilbert space H , and assume that F ∈ L 2 σ{G} is centered and differentiable in the sense of Malliavin. Then the Malliavin derivative of F , noted DF , is a H-valued random element, and in [25] the following upper bound is established via Stein’s method between the laws of F and Z ∼ N 0, 1: d T V F, Z 6 2E|1 − 〈DF, −DL −1 F 〉 H |, where L −1 is here the inverse of the Ornstein-Uhlenbeck generator associated with G and d T V is the total variation distance between the laws of F and Z. 5. Let N be a compensated Poisson measure over some measurable space A, A , with σ-finite control measure given by µ. Assume that F ∈ L 2 σ{N} is centered and differentiable in the sense of Malliavin. Then the derivative of F is a random processes which a.s. belongs to L 2 µ. In [31, Section 3] the following upper bound for the Wasserstein distance see Section 3.4 between the laws of F and Z ∼ N 0, 1 is proved again by means of Stein’s method: d W F, Z 6 E|1 − 〈DF, −DL −1 F 〉 L 2 µ | + E Z A |D a F | 2 × |D a L −1 F |µda. 6. In [6], Theorem 2.2, a bound to the normal distribution is given for functions F which strictly depend on the first n coordinates of X only. The bound is in terms of the operator ∆ j F of F , see 2.17. Using the connection in Remark 2.11 point 2, the term corresponding to B 2 in 3.27 would correspond to a bound on 1 n P n j=1 E |D j F |. Instead of B 1 in 3.27, [6] gives a bound in terms of the variance of a conditional expectation which depends on an exchangeable pair of sequences. Such variances are typically not easy to bound, except in the case of quadratic forms; see also Section 4.2.

3.2 First examples: Rademacher averages

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52