More on finite quadratic forms

Proposition 4.3. Fix q 2, and let F k = J q f k , k 1, be a sequence of multiple integrals such that f k ∈ ℓ 2 N ◦q and EF 2 k = qk f k k ℓ 2 N ⊗q → 1. Then, a sufficient condition in order to have that F k Law → Z ∼ N 0, 1 4.43 is that k f k ⋆ r r f k k ℓ 2 N ⊗2q−r → 0, ∀r = 1, ..., q − 1. 4.44 Proof. One only needs to combine Theorem 4.1 and Relation 4.38 with Point 3 of Lemma 2.4. Remark 4.4. The content of Proposition 4.3 echoes the results proved in [30], where it is shown that, on a fixed Gaussian chaos of order q, the convergence to zero of the contractions k f k ⋆ r r f k k, r = 1, ..., q − 1, is necessary and sufficient in order to have the CLT 4.43. See also [25] for bounds, involving norms of contractions, on the normal approximation of the elements of a Gaussian chaos. See [31] and [32] for analogous results concerning the normal approximation of regular functionals of a Poisson measure. Finally, observe that we do not know at the present time wether the condition 4.44 is necessary in order to have the CLT 4.43.

4.2 More on finite quadratic forms

When specialized to the case of normalized double integrals, Theorem 3.1, Proposition 4.3 and Remark 2.5 yield the following result. Corollary 4.5. Let F k = J 2 f k , k 1, be a sequence of double integrals such that EF 2 k = 2 k f k k 2 ℓ 2 N ⊗2 = 1 for simplicity. Let Z ∼ N 0, 1. Then, for every k 1 and every h ∈ C 2 b it holds that E[hF k ] − E[hZ] 4.45 6 4 p 2 min4 khk ∞ , kh ′′ k ∞ × k f k ⋆ 1 1 f k × 1 ∆ 2 k ℓ 2 N ⊗2 + 160kh ′′ k ∞ × k f k ⋆ 1 2 f k k 2 ℓ 2 N 6 4 p 2 min4 khk ∞ , kh ′′ k ∞ × k f k ⋆ 1 1 f k × 1 ∆ 2 k ℓ 2 N ⊗2 +160kh ′′ k ∞ × k f k ⋆ 1 1 f k × 1 ∆ c 2 k 2 ℓ 2 N ⊗2 , 4.46 and a sufficient condition in order to have the CLT 4.43 is that k f k ⋆ 1 1 f k k ℓ 2 N ⊗2 → 0. Now consider kernels f k ∈ ℓ 2 N ◦2 , k 1, such that for every k the following holds: i 2 k f k k 2 ℓ 2 N ⊗2 = 1, and ii the support of f k is contained in the set {1, ..., k} 2 . Then, the random variables F k = J 2 f k = X 16i, j6k f k i, jX i X j , k 1, 4.47 are quadratic functionals with no diagonal terms of the vectors X 1 , ..., X k . Limit theorems involv- ing sequences such as 4.47, for general vectors of i.i.d. random variables, have been intensively studied in the probabilistic literature – see e.g. [10], [16] and the references therein. The following result, providing a complete characterization of CLTs for sequences such as 4.47, can be deduced from the main findings contained in [10] but see also [11] for extensions to general multilinear functionals. 1724 Proposition 4.6. Let X be the Rademacher sequence considered in this paper, and let F k be given by 4.47. For every k 1, write [ f k ] for the k × k square symmetric matrix { f k i, j : 1 6 i, j 6 k}. Then, the following three conditions are equivalent as k → ∞: a F k Law → Z ∼ N 0, 1; b Trace {[ f k ] 4 } = k f k ⋆ 1 1 f k k 2 ℓ 2 N ⊗2 → 0; c EF 4 k → EZ 4 = 3. Remark 4.7. Condition b in the previous statement is often replaced by the following: b ′ Trace{[ f k ] 4 } → 0 and max j6k k X i=1 f k i, j 2 → 0. However, Relation 2.5 shows that the second requirement in b ′ is indeed redundant. In [6], Chatterjee proves that, in Wasserstein distance, d W F k , Z 6 r 1 2 Trace {[ f k ] 4 } + 5 2 k X j=1 k X i=1 f k i, j 3 2 . 4.48 Note that max j6k k X i=1 f k i, j 2 3 2 6 k X j=1 k X i=1 f k i, j 2 3 2 6 1 2 max j6k k X i=1 f k i, j 2 1 2 , 4.49 and due e.g. to 2.5, Relation 4.48 gives an alternate proof of the implication b → a in Proposition 4.6. Another proof of the same implication can be deduced from the following result, which is a direct consequence of Corollary 4.5 and Lemma 2.4 Point 3. Corollary 4.8. Let the notation and assumptions of this section prevail. Then, for every k and for every h ∈ C 2 b , one has that |E[hF k ] − E[hZ]| 6 4 p 2 min4 khk ∞ , kh ′′ k ∞ k f k ⋆ 1 1 f k × 1 ∆ 2 k ℓ 2 N ⊗2 + 160kh ′′ k ∞ k f k ⋆ 1 1 f k × 1 ∆ c 2 k 2 ℓ 2 N ⊗2 6 4 p 2 min4 khk ∞ , kh ′′ k ∞ p Trace {[ f k ] 4 } + 160kh ′′ k ∞ Trace {[ f k ] 4 }. 5 Sums of single and double integrals and applications to runs

5.1 Motivation: infinite weighted runs

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52