Bounds for infinite 2-runs

so that E 〈DF,−DL −1 F 〉 ℓ 2 Z − VarF 2 = E 2J 2 g ⋆ 1 1 g 1 ∆ 2 + 3J 1 f ⋆ 1 1 g 2 = 8 kg ⋆ 1 1 g 1 ∆ 2 k 2 ℓ 2 Z ⊗2 + 9k f ⋆ 1 1 g k 2 ℓ 2 Z . Hence, B 1 6 q 8 kg ⋆ 1 1 g 1 ∆ 2 k 2 ℓ 2 Z ⊗2 + 9k f ⋆ 1 1 g k 2 ℓ 2 Z 6 2 p 2 kg ⋆ 1 1 g 1 ∆ 2 k ℓ 2 Z ⊗2 + 3k f ⋆ 1 1 g k ℓ 2 Z . Now, let us consider B 2 . We have D k F 6 |f k| + 2 X i ∈Z |gi, k|. Similarly, D k L −1 F = f k + J 1 g ·, k = f k + X i ∈Z gi, kX i 6 | f k| + X i ∈Z |gi, k| 6 | f k| + 2 X i ∈Z |gi, k|. Still using a + b 4 6 8a 4 + b 4 , we deduce X k ∈Z D k L −1 F × D k F 3 6 X k ∈Z | f k| + 2 X i ∈Z |gi, k| 4 6 8 X k ∈Z    f 4 k + 16 X i ∈Z |gi, k| 4    . Hence B 2 6 160 3 X k ∈Z    f 4 k + 16 X i ∈Z |gi, k| 4    and the desired conclusion follows by applying Theorem 3.1.

5.3 Bounds for infinite 2-runs

When d = 1, Proposition 5.1 allows to deduce the following bound for the normal approximation of the random variable F n defined in 5.51. Proposition 5.3. Let {F n : n 1 } be the sequence defined by F n = G n −EG n p VarG n with G n = X i ∈Z α n i ξ i ξ i+1 . 1728 Here, ξ = {ξ n : n ∈ Z} stands for the standard Bernoulli sequence and {α n : n 1 } is a given sequence of elements of ℓ 2 Z. Consider a function h ∈ C 2 b . Then, for Z ∼ N 0, 1, E[hF] − E[hZ] 6 7 16 × min4 khk ∞ , kh ′′ k ∞ VarG n × rX i ∈Z α n i 4 5.55 + 35 24 × kh ′′ k ∞ VarG n 2 × X i ∈Z α n i 4 with VarG n = 3 16 X i ∈Z α n i 2 + 1 8 X i ∈Z α n i α n i+1 . 5.56 It follows that a sufficient condition to have F n Law → Z is that X i ∈Z α n i 4 = o € VarG n 2 Š as n → ∞. Proof. Identity 5.56 is easily verified. On the other hand, by 5.52, we have F n = G n − EG n p VarG n = J 1 f + J 2 g, with f = 1 4 p VarG n X a ∈Z α n a 1 {a} + 1 {a+1} g = 1 8 p VarG n X a ∈Z α n a 1 {a} ⊗ 1 {a+1} + 1 {a+1} ⊗ 1 {a} . Now, let us compute each quantity appearing in the RHS of 5.53. If i 6= j then g ⋆ 1 1 gi, j = 1 64VarG n α n i α n i+1 1 { j=i+2} + α n j α n j+1 1 { j=i−2} . Hence kg ⋆ 1 1 g 1 ∆ 2 k ℓ 2 Z ⊗2 = 1 64VarG n È X i, j ∈Z h α n i 2 α n i+1 2 1 { j=i+2} + α n j 2 α n j+1 2 1 { j=i−2} i = p 2 64VarG n rX i ∈Z α n i 2 α n i+1 2 . We have f ⋆ 1 1 gi = 1 32VarG n α n i α n i+1 + α n i −1 2 + α n i 2 + α n i −1 α n i −2 . 1729 Hence, using a + b + c + d 2 6 4a 2 + b 2 + c 2 + d 2 , k f ⋆ 1 1 g k ℓ 2 Z 6 1 16VarG n rX i ∈Z α n i 2 α n i+1 2 + X i ∈Z α n i −1 4 + X i ∈Z α n i 4 + X i ∈Z α n i −1 2 α n i −2 2 = p 2 16VarG n rX i ∈Z α n i 2 α n i+1 2 + X i ∈Z α n i 4 . We have, using a + b 4 6 8a 4 + b 4 , X k ∈Z f 4 k = 1 256VarG n 2 X k ∈Z   X a ∈Z α n a 1 {a} k + 1 {a+1} k   4 6 1 16VarG n 2 X k ∈Z α n k 4 . Finally, still using a + b 4 6 8a 4 + b 4 , X k ∈Z   X i ∈Z |gi, k|   4 6 1 4096VarG n 2 X k ∈Z   X i,a ∈Z α n a 1 {a} i1 {a+1} k + 1 {a+1} i1 {a} k   4 6 1 256VarG n 2 X k ∈Z α n k 4 . Now, the desired conclusion follows by plugging all these estimates in 5.53, after observing that P i ∈Z α n i 2 α n i+1 2 6 P i ∈Z α n i 4 , by the Cauchy-Schwarz inequality. 6 Multiple integrals over sparse sets 6.1 General results Fix d 2. Let F N , N 1, be a sequence of subsets of N d such that the following three properties are satisfied for every N 1: i F N 6= ;, ii F N ⊂ ∆ N d as defined in 2.2, that is, F N is contained in {1, . . . , N} d and has no diagonal components, and iii F N is a symmetric set, in the sense that every i 1 , ..., i d ∈ F N is such that i σ1 , ..., i σd ∈ F N for every permutation σ of the set {1, ..., d}. Let X be the infinite Rademacher sequence considered in this paper. Given sets F N as at points i–iii, we shall consider the sequence of multilinear forms e S N = [d × |F N |] − 1 2 X i 1 ,...,i d ∈F N X i 1 · · · X i d = J d f N , N 1, 6.57 where |F N | stands for the cardinality of F N , and f N i 1 , ..., i d := [d × |F N |] − 1 2 × 1 F N i 1 , ..., i d . 1730 Note that Ee S N = 0 and Ee S 2 N = 1 for every N . In the paper [5], Blei and Janson studied the problem of finding conditions on the set F N , in order to have that the CLT e S N Law → Z ∼ N 0, 1, N → ∞, 6.58 holds. Remark 6.1. Strictly speaking, Blei and Janson use the notation F N in order to indicate the restric- tion to the simplex {i 1 , ..., i d : i 1 i 2 ... i d } of a set verifying Properties i–iii above. In order to state Blei and Janson’s result, we need to introduce some more notation. Remark on notation. In what follows, we will write a k to indicate vectors a k = a 1 , ..., a k belonging to a set of the type {1, ..., N} k =: [N ] k , for some k, N 1. We will regard these objects both as vectors and sets, for instance: an expression of the type a k ∩ i l = ;, means that the two sets {a 1 , ..., a k } and {i 1 , ..., i l } have no elements in common; when writing j ∈ a k , we mean that j = a r for some r = 1, ..., k; when writing a k ⊂ i l k 6 l, we indicate that, for every r = 1, ..., k, one has a r = i s for some s = 1, ..., l. When a vector a k enters in a sum, we will avoid to specify a k ∈ [N] k , whenever the domain of summation [N ] k is clear from the context. Given N 1 and an index j ∈ [N], we set F ∗ N , j = {i d ∈ F N : j ∈ i d }. For every N , the set F N ⊂ F N × F N is defined as the collection of all pairs i d , k d ∈ F N × F N such that: a i d ∩ k d = ;, and b there exists p = 1, ..., d − 1, as well as i ′ p ⊂ i d and k ′ p ⊂ k d such that k ′ p , i d \ i ′ p , i ′ p , k d \ k ′ p ∈ F N × F N , where i d \ i ′ p represents the element of [N ] d −p obtained by eliminating from i d the coordinates belonging to i ′ p , and k ′ p , i d \ i ′ p is the element of [N ] d obtained by replacing i ′ p with k ′ p in i d an analogous description holds for i ′ p , k d \ k ′ p . In other words, the 2d indices i 1 , . . . , i d , j 1 , . . . , j d can be partitioned in at least two ways into elements of F N . Theorem 6.2. [5, Th. 1.7] Let the above notation and assumptions prevail, and suppose that lim N →∞ max j6N |F ∗ N , j | |F N | = 0, and 6.59 lim N →∞ |F N | |F N | 2 = 0. 6.60 Then Relation 6.58 holds, with convergence of all moments. Remark 6.3. As pointed out in [5], Condition 6.60 can be described as a weak “sparseness condi- tion” see e.g. [4]. See also [5, Th. 1.7] for a converse statement. The principal achievement of this section is the following refinement of Theorem 6.2. 1731 Theorem 6.4. Under the above notation and assumptions, consider a function h ∈ C

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52