Vectors of single and double integrals

6.1 Vectors of single and double integrals

The following statement corresponds to Theorem 3.3, in the special case F = F 1 , . . . , F d = I 1 g 1 , . . . , I 1 g m , I 2 h 1 , . . . , I 2 h n . 32 The proof, which is based on a direct computation of the general bounds proved in Theorem 3.3, serves as a further illustration in a simpler setting of the techniques used throughout the paper. Some of its applications will be illustrated in Section 6.2. Proposition 6.1. Fix integers n, m ≥ 1, let d = n+m, and let C be a d ×d nonnegative definite matrix. Let X ∼ N d 0, C. Assume that the vector in 32 is such that 1. the function g i belongs to L 2 µ ∩ L 3 µ, for every 1 ≤ i ≤ m, 2. the kernel h i ∈ L 2 s µ 2 1 ≤ i ≤ n is such that: a h i 1 ⋆ 1 2 h i 2 ∈ L 2 µ 1 , for 1 ≤ i 1 , i 2 ≤ n, b h i ∈ L 4 µ 2 and c the functions |h i 1 | ⋆ 1 2 |h i 2 |, |h i 1 | ⋆ 2 |h i 2 | and |h i 1 | ⋆ 1 |h i 2 | are well defined and finite for every value of their arguments and for every 1 ≤ i 1 , i 2 ≤ n, d every pair h i , h j verifies Assumption C, that in this case is equivalent to requiring that Z Z ÈZ Z µd ah 2 i z, ah 2 j z, aµdz ∞. Then, d 3 F, X ≤ 1 2 p S 1 + S 2 + S 3 + S 4 ≤ 1 2 p S 1 + S 5 + S 6 + S 4 where S 1 = m X i 1 ,i 2 =1 Ci 1 , i 2 − 〈g i 1 , g i 2 〉 L 2 µ 2 S 2 = n X j 1 , j 2 =1 Cm + j 1 , m + j 2 − 2〈h j 1 , h j 2 〉 L 2 µ 2 2 + 4kh j 1 ⋆ 1 2 h j 2 k 2 L 2 µ + 8kh j 1 ⋆ 1 1 h j 2 k 2 L 2 µ 2 S 3 = m X i=1 n X j=1 2Ci, m + j 2 + 5kg i ⋆ 1 1 h j k 2 L 2 µ S 4 = m 2 m X i=1 kg i k 3 L 3 µ + 8n 2 n X j=1 kh j k L 2 µ 2 kh j k 2 L 4 µ 2 + p 2 kh j 1 ⋆ 1 h j 1 k L 2 µ 3 S 5 = n X j 1 , j 2 =1 Cm + j 1 , m + j 2 − 2〈h j 1 , h j 2 〉 L 2 µ 2 2 + 4kh j 1 ⋆ 1 h j 1 k L 2 µ 3 × kh j 2 ⋆ 1 h j 2 k L 2 µ 3 +8kh j 1 ⋆ 1 1 h j 1 k L 2 µ 2 × kh j 2 ⋆ 1 1 h j 2 k L 2 µ 2 S 6 = m X i=1 n X j=1 2Ci, m + j 2 + 5kg i k 2 L 2 µ × kh j ⋆ 1 1 h j k L 2 µ 2 1514 Proof. Assumptions 1 and 2 in the statement ensure that each integral appearing in the proof is well-defined, and that the use of Fubini arguments is justified. In view of Theorem 4.2, our strategy is to study the quantities in line 15 and line 16 separately. On the one hand, we know that: for 1 ≤ i ≤ m, 1 ≤ j ≤ n, D z I 1 g i · = g i z, −D z L −1 I 1 g i · = g i z D z I 2 h j ·, · = 2I 1 h j z, ·, −D z L −1 I 2 h j ·, · = I 1 h j z, · Then, for any given constant a, we have: – for 1 ≤ i ≤ m, 1 ≤ j ≤ n, E [a − 〈D z I 1 g i 1 , −D z L −1 I 1 g i 2 〉 2 ] = a − 〈g i 1 , g i 2 〉 L 2 µ 2 ; – for 1 ≤ j 1 , j 2 ≤ n, E [a − 〈D z I 2 h j 1 , −D z L −1 I 2 h j 2 〉 2 ] = a − 2〈h j 1 , h j 2 〉 L 2 µ 2 2 + 4kh j 1 ⋆ 1 2 h j 2 k 2 L 2 µ + 8kh j 1 ⋆ 1 1 h j 2 k 2 L 2 µ 2 ; – for 1 ≤ i ≤ m, 1 ≤ j ≤ n, E [a − 〈D z I 2 h j , −D z L −1 I 1 g i 〉 2 ] = a 2 + 4kg i ⋆ 1 1 h j k 2 L 2 µ E [a − 〈D z I 1 g i , −D z L −1 I 2 h j 〉 2 ] = a 2 + kg i ⋆ 1 1 h j k 2 L 2 µ . So 15 = 1 2 p S 1 + S 2 + S 3 where S 1 , S 2 , S 3 are defined as in the statement of proposition. On the other hand, 2 X i=1 |D z F i | 2 =    m X i=1 |g i z| + 2 n X j=1 |I 1 h j z, ·|    2 , d X i=1 |D z L −1 F i | = m X i=1 |g i z| + n X j=1 |I 1 h j z, ·|. As the following inequality holds for all positive reals a, b: a + 2b 2 a + b ≤ a + 2b 3 ≤ 4a 3 + 32b 3 , 1515 we have, E    d X i=1 |D z F i | 2 d X i=1 |D z L −1 F i |    = E        m X i=1 |g i z| + 2 n X j=1 |I 1 h j z, ·|    2    m X i=1 |g i z| + n X j=1 |I 1 h j z, ·|        ≤ E    4 m X i=1 |g i z| 3 + 32    n X j=1 |I 1 h j z, ·|    3     ≤ E[4m 2 m X i=1 |g i z| 3 + 32n 2 n X j=1 |I 1 h j z, ·| 3 ]. By applying the Cauchy-Schwarz inequality, one infers that Z Z µdzE[|I 1 hz, ·| 3 ] ≤ s E –Z Z µdz|I 1 hz, ·| 4 ™ × khk L 2 µ 2 . Notice that E –Z Z µdz|I 1 hz, ·| 4 ™ = 2kh ⋆ 1 2 h k 2 L 2 µ + khk 4 L 4 µ 2 We have 16 = 1 4 m 2 kC −1 k 3 2 op kCk op Z Z µdzE    d X i=1 |D z F i | 2 d X i=1 |D z L −1 F i |    ≤ kC −1 k 3 2 op kCk op m 2 m X i=1 kg i k 3 L 3 µ +8n 2 n X j=1 kh j k L 2 µ 2 kh j k 2 L 4 µ 2 + p 2 kh j ⋆ 1 2 h j k L 2 µ = kC −1 k 3 2 op kCk op S 4 We will now apply Lemma 2.9 to further assess some of the summands appearing the definition of S 2 ,S 3 . Indeed, – for 1 ≤ j 1 , j 2 ≤ n, kh j 1 ⋆ 1 2 h j 2 k 2 L 2 µ ≤ kh j 1 ⋆ 1 h j 1 k L 2 µ 3 × kh j 2 ⋆ 1 h j 2 k L 2 µ 3 kh j 1 ⋆ 1 1 h j 2 k 2 L 2 µ 2 ≤ kh j 1 ⋆ 1 1 h j 1 k L 2 µ 2 × kh j 2 ⋆ 1 1 h j 2 k L 2 µ 2 ; 1516 – for 1 ≤ i ≤ m, 1 ≤ j ≤ n, kg i ⋆ 1 1 h j k 2 L 2 µ ≤ kg i k 2 L 2 µ × kh j ⋆ 1 1 h j k L 2 µ 2 by using the equality kg k i ⋆ g k i k 2 L 2 µ 2 = kg k i k 4 L 2 µ . Consequently, S 2 ≤ n X j 1 , j 2 =1 Cm + j 1 , m + j 2 − 2〈h j 1 , h j 2 〉 L 2 µ 2 2 + 4kh j 1 ⋆ 1 h j 1 k L 2 µ 3 × kh j 2 ⋆ 1 h j 2 k L 2 µ 3 +8kh j 1 ⋆ 1 1 h j 1 k L 2 µ 2 × kh j 2 ⋆ 1 1 h j 2 k L 2 µ 2 = S 5 , S 3 ≤ m X i=1 n X j=1 2Ci, m + j 2 + 5kg i k 2 L 2 µ × kh j ⋆ 1 1 h j k L 2 µ 2 = S 6 Remark 6.2. If the matrix C is positive definite, then we have d 2 F, X ≤ kC −1 k op kCk 1 2 op p S 1 + S 2 + S 3 + p 2 π 2 kC −1 k 3 2 op kCk op S 4 ≤ kC −1 k op kCk 1 2 op p S 1 + S 5 + S 6 + p 2 π 2 kC −1 k 3 2 op kCk op S 4 by using Theorem 3.3. The following result can be proved by means of Proposition 6.1. Corollary 6.3. Let d = m + n, with m, n ≥ 1 two integers . Let X C ∼ N d 0, C be a centered d- dimensional Gaussian vector, where C = {Cs, t : s, t = 1, . . . , d} is a d × d nonnegative definite matrix such that Ci, j + m = 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ n. Assume that F k = F k 1 , . . . , F k d := I 1 g k 1 , . . . , I 1 g k m , I 2 h k 1 , . . . , I 2 h k n where for all k, the kernels g k 1 , . . . , g k m and h k 1 , . . . , h k n satisfy respectively the technical Conditions 1 and 2 in Proposition 6.1 . Assume moreover that the following conditions hold for each k ≥ 1: 1. lim k →∞ E [F k s F k t ] = Cs, t, 1 ≤ s, t ≤ d. or equivalently lim k →∞ 〈g k i 1 , g k i 2 〉 L 2 µ = Ci 1 , i 2 , 1 ≤ i 1 , i 2 ≤ m, lim k →∞ 2 〈h k j 1 , h k j 2 〉 L 2 µ 2 = Cm + j 1 , m + j 2 , 1 ≤ j 1 , j 2 ≤ n. 1517 2. For every i = 1, . . . , m and every j = 1, . . . , n, one has the following conditions are satisfied as k → ∞: a kg k i k 3 L 3 µ → 0; b kh k j k 2 L 4 µ 2 → 0; c kh k j ⋆ 1 2 h k j k L 2 µ = kh k j ⋆ 1 h k j k L 2 µ 3 → 0; d kh k j ⋆ 1 1 h k j k 2 L 2 µ 2 → 0. Then F k → X in law, as k → ∞. An explicit bound on the speed of convergence in the distance d 3 is provided by Proposition 6.1.

6.2 Vector of functionals of Ornstein-Uhlenbeck processes

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52