Stein’s method versus smart paths: two tables

Table 1: Estimates proved by means of Malliavin-Stein techniques Regularity of Upper bound the test function h khk Li p is finite |E[hG] − E[hX ]| ≤ khk Li p p E [1 − 〈DG, −DL −1 G 〉 H 2 ] khk Li p is finite |E[hG 1 , . . . , G d ] − E[hX C ]| ≤ khk Li p kC −1 k op kCk 1 2 op qP d i, j=1 E [Ci, j − 〈DG i , −DL −1 G j 〉 H 2 ] khk Li p is finite |E[hF] − E[hX ]| ≤ khk Li p p E [1 − 〈DF, −DL −1 F 〉 L 2 µ 2 ] + R Z µdzE[|D z F | 2 |D z L −1 F |] h ∈ C 2 R d |E[hF 1 , . . . , F d ] − E[hX C ]| ≤ khk Li p is finite khk Li p kC −1 k op kCk 1 2 op qP d i, j=1 E [Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ 2 ] M 2 h is finite +M 2 h p 2 π 8 kC −1 k 3 2 op kCk op R Z µdzE   ‚ d P i=1 |D z F i | Œ 2 ‚ d P i=1 |D z L −1 F i | Œ 

4.2 Stein’s method versus smart paths: two tables

In the two tables below, we compare the estimations obtained by the Malliavin-Stein method with those deduced by interpolation techniques, both in a Gaussian and Poisson setting. Note that the test functions considered below have partial derivatives that are not necessarily bounded by 1 as it is indeed the case in the definition of the distances d 2 and d 3 so that the L ∞ norms of various derivatives appear in the estimates. In both tables, d ≥ 2 is a given positive integer. We write G, G 1 , . . . , G d to indicate a vector of centered Malliavin differentiable functionals of an isonormal Gaussian process over some separable real Hilbert space H see [12] for defini- tions. We write F, F 1 , ..., F d to indicate a vector of centered functionals of ˆ N , each belonging to domD. The symbols D and L −1 stand for the Malliavin derivative and the inverse of the Ornstein-Uhlenbeck generator: plainly, both are to be regarded as defined either on a Gaussian space or on a Poisson space, according to the framework. We also consider the following Gaussian random elements: X ∼ N 0, 1, X C ∼ N d 0, C and X M ∼ N d 0, M , where C is a d × d posi- tive definite covariance matrix and M is a d ×d covariance matrix not necessarily positive definite. In Table 1, we present all estimates on distances involving Malliavin differentiable random variables in both cases of an underlying Gaussian and Poisson space, that have been obtained by means of Malliavin-Stein techniques. These results are taken from: [9] Line 1, [11] Line 2, [17] Line 3 and Theorem 3.3 and its proof Line 4. In Table 2, we list the parallel results obtained by interpolation methods. The bounds involving functionals of a Gaussian process come from [10], whereas those for Poisson functionals are taken 1504 Table 2: Estimates proved by means of interpolations Regularity of Upper bound the test function φ φ ∈ C 2 R |E[φG] − E[φX ]| ≤ kφ ′′ k ∞ is finite 1 2 kφ ′′ k ∞ p E [1 − 〈DG, −DL −1 G 〉 H 2 ] φ ∈ C 2 R d |E[φG 1 , . . . , G d ] − E[φX M ]| ≤ kφ ′′ k ∞ is finite d 2 kφ ′′ k ∞ qP d i, j=1 E [M i, j − 〈DG i , −DL −1 G j 〉 H 2 ] φ ∈ C 3 R |E[φF] − E[φX ]| ≤ kφ ′′ k ∞ is finite 1 2 kφ ′′ k ∞ p E [1 − 〈DF, −DL −1 F 〉 L 2 µ 2 ] kφ ′′′ k ∞ is finite + 1 4 kφ ′′′ k ∞ R Z µdzE[|D z F | 2 |D z L −1 F |] φ ∈ C 3 R d |E[φF 1 , . . . , F d ] − E[φX M ]| ≤ kφ ′′ k ∞ is finite d 2 kφ ′′ k ∞ qP d i, j=1 E [M i, j − 〈DF i , −DL −1 F j 〉 L 2 µ 2 ] kφ ′′′ k ∞ is finite + 1 4 kφ ′′′ k ∞ R Z µdzE   ‚ d P i=1 |D z F i | Œ 2 ‚ d P i=1 |D z L −1 F i | Œ  from Theorem 4.2 and its proof. Observe that: • in contrast to the Malliavin-Stein method, the covariance matrix M is not required to be positive definite when using the interpolation technique, • in general, the interpolation technique requires more regularity on test functions than the Malliavin-Stein method. 5 CLTs for Poisson multiple integrals In this section, we study the Gaussian approximation of vectors of Poisson multiple stochastic inte- grals by an application of Theorem 3.3 and Theorem 4.2. To this end, we shall explicitly evaluate the quantities appearing in formulae 10–11 and 15–16. Remark 5.1 Regularity conventions. From now on, every kernel f ∈ L 2 s µ p is supposed to verify both Assumptions A and B of Definition 2.8. As before, given f ∈ L 2 s µ p , and for a fixed z ∈ Z, we write f z, · to indicate the function defined on Z p −1 as z 1 , . . . , z p −1 7→ f z, z 1 , . . . , z p −1 . The following convention will be also in order: given a vector of kernels f 1 , ..., f d such that f i ∈ L 2 s µ p i , i = 1, ..., d, we will implicitly set f i z, · ≡ 0, i = 1, ..., d, 1505 for every z ∈ Z belonging to the exceptional set of µ measure 0 such that f i z, · ⋆ l r f j z, · ∈ L 2 µ p i +p j −r−l−2 for at least one pair i, j and some r = 0, ..., p i ∧ p j − 1 and l = 0, ..., r. See Point 3 of Remark 2.10.

5.1 The operators G

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52