Main estimates getdocc076. 375KB Jun 04 2011 12:04:55 AM

4 Upper bounds obtained by interpolation methods

4.1 Main estimates

In this section, we deduce an alternate upper bound similar to the ones proved in the previous section by adopting an approach based on interpolations. We first prove a result involving Malliavin operators. Lemma 4.1. Fix d ≥ 1. Consider d + 1 random variables F i ∈ L 2 P, 0 ≤ i ≤ d, such that F i ∈ dom D and E[F i ] = 0. For all g ∈ C 2 R d with bounded derivatives, E [gF 1 , . . . , F d F ]= E   d X i=1 ∂ ∂ x i gF 1 , . . . , F d 〈DF i , −DL −1 F 〉 L 2 µ  +E ” 〈R, −DL −1 F 〉 L 2 µ — , where |E[〈R, −DL −1 F 〉 L 2 µ ]| 14 ≤ 1 2 max i, j sup x ∈R d ∂ 2 ∂ x i ∂ x j gx × Z Z µdzE    d X k=1 |D z F k | 2 |D z L −1 F |    . Proof. By applying Lemma 3.1, E [gF 1 , . . . , F d F ] = E [L L −1 F gF 1 , . . . , F d ] = −E[δDL −1 F gF 1 , . . . , F d ] = E [〈DgF 1 , . . . , F d , −DL −1 F 〉 L 2 µ ] = E   d X i=1 ∂ ∂ x i gF 1 , . . . , F d 〈DF i , −DL −1 F 〉 L 2 µ   + E[〈R,−DL −1 F 〉 L 2 µ ], and E[ 〈R, −DL −1 F 〉 L 2 µ ] verifies the inequality 14. As anticipated, we will now use an interpolation technique inspired by the so-called “smart path method”, which is sometimes used in the framework of approximation results for spin glasses see [26]. Note that the computations developed below are very close to the ones used in the proof of Theorem 7.2 in [10]. Theorem 4.2. Fix d ≥ 1 and let C = {Ci, j : i, j = 1, . . . , d} be a d × d covariance matrix not necessarily positive definite. Suppose that X = X 1 , ..., X d ∼ N d 0, C and that F = F 1 , . . . , F d is a R d -valued random vector such that E[F i ] = 0 and F i ∈ dom D, i = 1, . . . , d. Then, d 3 F, X ≤ d 2 v u u t d X i, j=1 E [Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ 2 ] 15 + 1 4 Z Z µdzE    d X i=1 |D z F i | 2 d X i=1 |D z L −1 F i |    . 16 1500 Proof. We will work under the assumption that both expectations in 15 and 16 are finite. By the definition of distance d 3 , we need only to show the following inequality: |E[φX ] − E[φF]| ≤ 1 2 kφ ′′ k ∞ d X i, j=1 E [|Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ |] + 1 4 kφ ′′′ k ∞ Z Z µdzE    d X i=1 |D z F i | 2 d X i=1 |D z L −1 F i |    for any φ ∈ C 3 R d with second and third bounded derivatives. Without loss of generality, we may assume that F and X are independent. For t ∈ [0, 1], we set Ψt = E[φ p 1 − tF 1 , . . . , F d + p t X ] We have immediately |Ψ1 − Ψ0| ≤ sup t ∈0,1 |Ψ ′ t|. Indeed, due to the assumptions on φ, the function t 7→ Ψt is differentiable on 0, 1, and one has also Ψ ′ t = d X i=1 E – ∂ ∂ x i φ p 1 − tF 1 , . . . , F d + p t X ‚ 1 2 p t X i − 1 2 p 1 − t F i Œ™ := 1 2 p t A − 1 2 p 1 − t B . On the one hand, we have A = d X i=1 E – ∂ ∂ x i φ p 1 − tF 1 , . . . , F d + p t X X i ™ = d X i=1 E  E – ∂ ∂ x i φ p 1 − ta + p t X X i ™ |a=F 1 ,...,F d   = p t d X i, j=1 Ci, jE  E – ∂ 2 ∂ x i ∂ x j φ p 1 − ta + p t X ™ |a=F 1 ,...,F d   = p t d X i, j=1 Ci, jE – ∂ 2 ∂ x i ∂ x j φ p 1 − tF 1 , . . . , F d + p t X ™ . On the other hand, B = d X i=1 E – ∂ ∂ x i φ p 1 − tF 1 , . . . , F d + p t X F i ™ = d X i=1 E  E – ∂ ∂ x i φ p 1 − tF 1 , . . . , F d + p t bF i ™ |b=X   . 1501 We now write φ t,b i · to indicate the function on R d defined by φ t,b i F 1 , . . . , F d = ∂ ∂ x i φ p 1 − tF 1 , . . . , F d + p t b By using Lemma 4.1, we deduce that E [φ t,b i F 1 , . . . , F d F i ] = E    d X j=1 ∂ ∂ x j φ t,b i F 1 , . . . , F d 〈DF j , −DL −1 F i 〉 L 2 µ    + E ” 〈R i b , −DL −1 F i 〉 L 2 µ — , where R i b is a residue verifying |E[〈R i b , −DL −1 F i 〉 L 2 µ ]| 17 ≤ 1 2 ‚ max k,l sup x ∈R d ∂ ∂ x k ∂ x l φ t,b i x Œ Z Z µdzE        d X j=1 |D z F j |    2 |D z L −1 F i |     . Thus, B = p 1 − t d X i, j=1 E  E – ∂ 2 ∂ x i ∂ x j φ p 1 − tF 1 , . . . , F d + p t b 〈DF i , −DL −1 F j 〉 L 2 µ ™ |b=X   + d X i=1 E h E ” 〈R i b , −DL −1 F i 〉 L 2 µ — |b=X i = p 1 − t d X i, j=1 E – ∂ 2 ∂ x i ∂ x j φ p 1 − tF 1 , . . . , F d + p t X 〈DF i , −DL −1 F j 〉 L 2 µ ™ + d X i=1 E h E ” 〈R i b , −DL −1 F i 〉 L 2 µ — |b=X i . Putting the estimates on A and B together, we infer Ψ ′ t = 1 2 d X i, j=1 E – ∂ 2 ∂ x i ∂ x j φ p 1 − tF 1 , . . . , F d + p t X Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ ™ − 1 2 p 1 − t d X i=1 E h E ” 〈R i b , −DL −1 F i 〉 L 2 µ — |b=X i . We notice that ∂ 2 ∂ x i ∂ x j φ p 1 − tF 1 , . . . , F d + p t b ≤ k φ ′′ k ∞ , 1502 and also ∂ 2 ∂ x k ∂ x l φ t,b i F 1 , . . . , F d = 1 − t × ∂ 3 ∂ x i ∂ x k ∂ x l φ p 1 − tF 1 , . . . , F d + p t b ≤ 1 − tkφ ′′′ k ∞ . To conclude, we can apply inequality 17 as well as Cauchy-Schwartz inequality and deduce the estimates |E[φX ] − E[φF]| ≤ sup t ∈0,1 |Ψ ′ t| ≤ 1 2 kφ ′′ k ∞ d X i, j=1 E [|Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ |] + 1 − t 4 p 1 − t kφ ′′′ k ∞ Z Z µdzE    d X i=1 |D z F i | 2 d X i=1 |D z L −1 F i |    ≤ d 2 kφ ′′ k ∞ v u u t d X i, j=1 E [Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ 2 ] + 1 4 kφ ′′′ k ∞ Z z µdzE    d X i=1 |D z F i | 2 d X i=1 |D z L −1 F i |    , thus concluding the proof. The following statement is a direct consequence of Theorem 4.2, as well as a natural generalization of Corollary 3.4. Corollary 4.3. For a fixed d ≥ 2, let X ∼ N d 0, C, with C a generic covariance matrix. Let F n = F n,1 , ..., F n,d = ˆ N h n,1 , ..., ˆ N h n,d , n ≥ 1, be a collection of d-dimensional random vectors in the first Wiener chaos of ˆ N , and denote by K n the covariance matrix of F n . Then, d 3 F n , X ≤ d 2 kC − K n k H.S. + d 2 4 d X i=1 Z Z |h n,i z| 3 µdz. In particular, if relation 13 is verified for every i, j = 1, ..., d as n → ∞, then d 3 F n , X → 0 and F n converges in distribution to X . 1503 Table 1: Estimates proved by means of Malliavin-Stein techniques Regularity of Upper bound the test function h khk Li p is finite |E[hG] − E[hX ]| ≤ khk Li p p E [1 − 〈DG, −DL −1 G 〉 H 2 ] khk Li p is finite |E[hG 1 , . . . , G d ] − E[hX C ]| ≤ khk Li p kC −1 k op kCk 1 2 op qP d i, j=1 E [Ci, j − 〈DG i , −DL −1 G j 〉 H 2 ] khk Li p is finite |E[hF] − E[hX ]| ≤ khk Li p p E [1 − 〈DF, −DL −1 F 〉 L 2 µ 2 ] + R Z µdzE[|D z F | 2 |D z L −1 F |] h ∈ C 2 R d |E[hF 1 , . . . , F d ] − E[hX C ]| ≤ khk Li p is finite khk Li p kC −1 k op kCk 1 2 op qP d i, j=1 E [Ci, j − 〈DF i , −DL −1 F j 〉 L 2 µ 2 ] M 2 h is finite +M 2 h p 2 π 8 kC −1 k 3 2 op kCk op R Z µdzE   ‚ d P i=1 |D z F i | Œ 2 ‚ d P i=1 |D z L −1 F i | Œ 

4.2 Stein’s method versus smart paths: two tables

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52