Central limit theorems with contraction conditions

5.3 Central limit theorems with contraction conditions

We will now deduce the announced CLTs for sequences of vectors of the type F n = F n 1 , . . . , F n d := I q 1 f n 1 , . . . , I q d f n d , n ≥ 1. 28 As already discussed, our results should be compared with other central limit results for multiple stochastic integrals in a Gaussian or Poisson setting – see e.g. [9, 11, 13, 14, 18, 20]. The following statement, which is a genuine multi-dimensional generalization of Theorem 5.1 in [17], is indeed one of the main achievements of the present article. Theorem 5.8 CLT for chaotic vectors. Fix d ≥ 2, let X ∼ N 0, C, with C = {Ci, j : i, j = 1, . . . , d} a d × d nonnegative definite matrix, and fix integers q 1 , . . . , q d ≥ 1. For any n ≥ 1 and i = 1, . . . , d, let f n i belong to L 2 s µ q i . Define the sequence {F n : n ≥ 1}, according to 28 and suppose that lim n →∞ E [F n i F n j ] = 1 q j =q i q j × lim n →∞ 〈 f n i , f n j 〉 L 2 µ qi = Ci, j, 1 ≤ i, j ≤ d. 29 Assume moreover that the following Conditions 1–4 hold for every k = 1, ..., d: 1. For every n, the kernel f n k satisfies Assumptions A and B. 2. For every l = 1, ..., d and every n, the kernels f n k and f n l satisfy Assumption C. 3. For every r = 1, . . . , q k and every l = 1, . . . , r ∧ q k − 1, one has that k f n k ⋆ l r f n k k L 2 µ 2qk−r−l → 0, as n → ∞. 4. As n → ∞, R Z qk d µ q k f n k 4 → 0. Then, F n converges to X in distribution as n → ∞. The speed of convergence can be assessed by combining the estimates of Proposition 5.5 and Proposition 5.6 either with Theorem 3.3 when C is positive definite or with Theorem 4.2 when C is merely nonnegative definite. Remark 5.9. 1. For every f ∈ L 2 s µ q , q ≥ 1, one has that k f ⋆ q f k 2 L 2 µ q = Z Z q d µ q f 4 . 2. When q i 6= q j , then F n i and F n j are not in the same chaos, yielding that Ci, j = 0 in formula 29. In particular, if Conditions 1-4 of Theorem 5.8 are verified, then F n i and F n j are asymptotically independent. 1512 3. When specializing Theorem 5.8 to the case q 1 = ... = q d = 1, one obtains a set of con- ditions that are different from the ones implied by Corollary 4.3. First observe that, if q 1 = ... = q d = 1, then Condition 3 in the statement of Theorem 5.8 is immaterial. As a consequence, one deduces that F n converges in distribution to X , provided that 29 is verified and k f n k L 4 µ → 0. The L 4 norms of the functions f n appear due to the use of Cauchy-Schwarz inequality in the proof of Proposition 5.6. Proof of Theorem 5.8. By Theorem 4.2, d 3 F n , X ≤ d 2 v u u t d X i, j=1 E [Ci, j − 〈DF n i , −DL −1 F n j 〉 L 2 µ 2 ] 30 + 1 4 Z Z µdzE    d X i=1 |D z F n i | 2 d X i=1 |D z L −1 F n i |    , 31 so that we need only show that, under the assumptions in the statement, both 30 and 31 tend to 0 as n → ∞. On the one hand, we take a = Ci, j in Proposition 5.5. In particular, we take a = 0 when q i 6= q j . Admitting Condition 3 , 4 and 29, line 30 tends to 0 is a direct consequence of Proposition 5.5. On the other hand, under Condition 3 and 4, Proposition 5.6 shows that 31 converges to 0. This concludes the proof and the above inequality gives the speed of convergence. If the matrix C is positive definite, then one could alternatively use Theorem 3.3 instead of Theorem 4.2 while the deduction remains the same. Remark 5.10. Apart from the asymptotic behavior of the covariances 29 and the presence of Assumption C, the statement of Theorem 5.8 does not contain any requirements on the joint distri- bution of the components of F n . Besides the technical requirements in Condition 1 and Condition 2, the joint convergence of the random vectors F n only relies on the ‘one-dimensional’ Conditions 3 and 4, which are the same as condition II and III in the statement of Theorem 5.1 in [17]. See also Remark 3.5. 6 Examples In what follows, we provide several explicit applications of the main estimates proved in the paper. In particular: • Section 6.1 focuses on vectors of single and double integrals. • Section 6.2 deals with three examples of continuous-time functionals of Ornstein-Uhlenbeck Lévy processes. 1513

6.1 Vectors of single and double integrals

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52