Simulations getdocf93c. 288KB Jun 04 2011 12:05:13 AM

suppose the sequences k and n satisfy k g = −1 + sn where g ≥ 1 is fixed and s = on 13 . Fix primes p 1 , p 2 , . . . , p t and positive integers β 1 , β 2 , . . . , β t . Define e n = p β 1 1 p β 2 2 . . . p β t t n . Suppose k = p 1 p 2 . . . p t m → ∞. Then the ESD of en −12 A k , e n converges weakly in probability to the LSD which has 1 − Π t s= 1 p β s s −1 mass at zero, and rest of the probability mass is distributed as U 1 Q g i= 1 E i 12g where U 1 and {E i } are as in Theorem 4.

3.4.2 n = k

g − 1 for some g ≥ 2 For z i , w i ∈ R, i = 1, 2, .., g, and with {N i } i.i.d. N0, 1, define H g ω i , z i , w i , i = 1, . . . , g = P Bω 1 , ω 2 , .., ω g N 1 , ..., N 2g ′ ≤ z i , w i , i = 1, 2, .., g ′ . Lemma 5. i H g is a bounded continuous in ω 1 , . . . , ω g for fixed {z i , w i , i = 1, . . . , g }. ii F g defined below is a proper distribution function. F g z i , w i , i = 1, . . . , g = Z 1 · · · Z 1 H g 2πt i , z i , w i , i = 1, . . . , g Y d t i . 3.10 iii If LebC = 0 then F g is continuous everywhere and may be expressed as F g z i , w i , i = 1, .., g = Z · · · Z I {t≤z k ,w k ,k=1,..,g } h Z 1 · · · Z 1 I { Q f 2πu i 6=0} 2π g Q g i= 1 [π f 2πu i ] g Y i= 1 e − 1 2 t2 2i −1 +t2 2i π f 2πui Y du i i dt . where t = t 1 , t 2 , . . . , t 2g −1 , t 2g and dt = Q d t i . Further F g is multivariate with independent com- ponents if and only if f is constant almost everywhere Lebesgue. iv If LebC 6= 0 then F g is discontinuous only on D g = {z i , w i , i = 1, . . . , g : Q g i= 1 z i w i = 0}. The proof of lemma is omitted. Theorem 5. Suppose Assumptions B and C hold. Suppose n = k g − 1 for some g ≥ 2. Then as n → ∞, F n −12 A k ,n converges in L 2 to the LSD Q g i= 1 G i 1g where RG i , I G i ; i = 1, 2, . . . g has the distribution F g given in 3.10. Remark 6. If {x i } are i.i.d, with finite 2 + δ moment, then f ω ≡ 12π and the LSD simpli- fies to U 2 Q g i= 1 E i 12g where {E i } are i.i.d. E x p1, U 2 is uniformly distributed over the unit circle independent of {E i }. This agrees with Theorem 4 of Bose, Mitra and Sen [2008].

3.5 Simulations

To demonstrate the limits we did some modest simulations with MA1 and MA2 processes. We performed numerical integration to obtain the LSD. In case of k-circulant n = k 2 + 1, we have plotted the density of F 2 defined in 3.9. 2473 2 4 6 8 10 0.2 0.4 0.6 0.8 1 1.2 1.4 −− dependent entries −6 −4 −2 2 4 6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 symmetric circulant Figure 1: i left dashed line represents the density of F 2 when f ω = 1 2π 1.25 + cos x and the continuous line represents the same with f ≡ 1 2π . ii right dashed line represents the LSD of symmetric circulant matrix with entries x t = 0.3ε t + ε t+ 1 + 0.5ε t+ 2 where {ε i } i.i.d. N0, 1 and the continuous line represents the kernel density estimate of the ESD of the same matrix of order 5000 × 5000 and same {x t }. −5 5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 reverse circulant with N0,1 entries −5 5 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 reverse circulant with Binomail1,0.5 Figure 2: i left dashed line represents the LSD of the reverse circulant matrix with entries x t = 0.3ε t +ε t+ 1 +0.5ε t+ 2 where {ε i } i.i.d. N0, 1. The continuous line represents the kernel density estimate of ESD of the same matrix of order 5000 × 5000 with same {x t }. ii same graphs with centered and scaled Bernoulli1, 0.5. 2474 4 Proofs of main results Throughout c and C will denote generic constants depending only on d. We use the notation a n ∼ b n if a n − b n → 0 and a n ≈ b n if a n b n → 1. As pointed out earlier, to prove that F n converges to F say in L 2 , it is enough to show that E [F n t] → Ft and V [F n t] → 0 4.1 at all continuity points t of F . This is what we shall show in every case. If the eigenvalues have the decomposition λ k = η k + y k for 1 ≤ k ≤ n, where y k → 0 in probability then {λ k } and {η k } have similar behavior. We make this precise in the following lemma. Lemma 6. Suppose {λ n ,k } 1 ≤k≤n is a triangular sequence of R d -valued random variables such that λ n ,k = η n ,k + y n ,k for 1 ≤ k ≤ n. Assume the following holds: i lim n →∞ 1 n P n k= 1 P η n ,k ≤ ˜x = F˜x, for ˜x ∈ R d , ii lim n →∞ 1 n 2 P n k ,l=1 P η n ,k ≤ ˜x, η n ,l ≤ ˜y = F˜xF ˜y, for ˜x, ˜y ∈ R d iii For any ε 0, max 1 ≤k≤n P | y n ,k | ε → 0 as n → ∞. Then, 1. lim n →∞ 1 n P n k= 1 P λ n ,k ≤ ˜x = F˜x. 2. lim n →∞ 1 n 2 P n k ,l=1 P λ n ,k ≤ ˜x, λ n ,l ≤ ˜y = F˜xF ˜y. Proof. We define new random variables Λ n with PΛ n = λ n ,k = 1n for k = 1, . . . , n. Then PΛ n ≤ ˜x = 1 n n X k= 1 P λ n ,k ≤ ˜x. Similarly define E n with PE n = η n ,k = 1n for 1 ≤ k ≤ n and Y n with PY n = y n ,k = 1n for 1 ≤ k ≤ n. Now observe that Λ n = E n + Y n and for any ε 0, P |Y n | ε = 1 n n X k= 1 P | y n ,k | ε → 0, as n → ∞ by assumption iii. Therefore Λ n and E n have the same limiting distribution. Now as n → ∞, PE n ≤ ˜x = 1 n n X k= 1 P η n ,k ≤ ˜x → F˜x. by assumption i Therefore as n → ∞, 1 n n X k= 1 P λ n ,k ≤ ˜x = PΛ n ≤ ˜x → F˜x 2475 and this is conclusion i. To prove ii we use similar type of argument. Here we define new random variables ˜ Λ n with P ˜ Λ n = λ n ,k , λ n ,l = 1n 2 for 1 ≤ k, l ≤ n. Similarly define ˜E n and ˜ Y n . Again ˜ Λ n = ˜ E n + ˜ Y n and P kY n k ε = 1 n 2 n X k ,l=1 P k y n ,k , y n ,l k ε → 0, as n → ∞. So ˜ Λ n and ˜ E n will have same limiting distribution and hence conclusion ii holds. We use normal approximation heavily in our proofs. Lemma 7 is a fairly standard consequence of normal approximation and follows easily from Bhattacharya and Ranga Rao [1976] Corollary 18.1, page 181 and Corollary 18.3, page 184. We omit its proof. Part i will be used in Section 4.1– 4.4 and Part ii will be used in Section 4.4. Lemma 7. Let X 1 , . . . , X k be independent random vectors with values in R d , having zero means and an average positive-definite covariance matrix V k = k −1 P k j= 1 C ovX j . Let G k denote the distribution of k −12 T k X 1 + . . . + X k , where T k is the symmetric, positive-definite matrix satisfying T 2 k = V −1 k , n ≥ 1. If for some δ 0, EkX j k 2+δ ∞, then there exists C 0 depending only on d, such that i sup B ∈C |G k B − Φ d B| ≤ C k −δ2 [λ min V k ] −2+δ ρ 2+δ ii for any Borel set A, |G k A − Φ d A| ≤ C k −δ2 [λ min V k ] −2+δ ρ 2+δ + 2 sup y ∈R d Φ d ∂ A η − y where Φ d is the standard d dimensional normal distribution function, C is the class of all Borel mea- surable convex subsets of R d , ρ 2+δ = k −1 P k j= 1 E kX j k 2+δ and η = Cρ 2+δ n −δ2 .

4.1 Proof of Theorem 1

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52