Symmetric Circulant Matrix Reverse circulant matrix

3.1 Circulant matrix

Define for x, y ∈ R 2 and ω ∈ [0, 2π], H C ω, x, y = ¨ P B ωN 1 , N 2 ′ ≤ p 2x, y ′ if f ω 6= 0, I x ≥ 0, y ≥ 0 if f ω = 0, where N 1 and N 2 are i.i.d. standard normal distributions. Lemma 1. i For fixed x, y, H C is a bounded continuous function in ω. ii F C defined as follows is a proper distribution function. F C x, y = Z 1 H C 2πs, x, yds. 3.1 iii If LebC = 0 then F C is continuous everywhere and can be expressed as F C x, y = ZZ I {v 1 ,v 2 ≤x, y} h Z 1 1 2π 2 f 2πs e − v2 1 +v2 2 2π f 2πs ds i d v 1 d v 2 . 3.2 Further, F C is bivariate normal if and only if f is constant almost everywhere Lebesgue. iv If LebC 6= 0 then F C is discontinuous only on D 1 = {x, y : x y = 0}. The proof of the Lemma is easy and we omit it. The normality claim in iii follows by applying Cauchy Schwartz inequality to compare fourth moment and square of the variance and using the fact that for the normal distribution their ratio equals 3. We omit the details. Theorem 1. Suppose Assumptions B and C hold. Then the ESD of C n converges in L 2 to F C · given in 3.1–3.2. Remark 1. If {x i } are i.i.d with finite 2 + δ moment, then f ω ≡ 12π, and F C reduces to the bivariate normal distribution whose covariance matrix is diagonal with entries 12 each. This agrees with Theorem 15, page 57 of Sen [2006] who proved the result under Assumption A.

3.2 Symmetric Circulant Matrix

For x ∈ R and ω ∈ [0, π] define, H S ω, x = ¨ P p 2π f ωN 0, 1 ≤ x if f ω 6= 0, I x ≥ 0 if f ω = 0. 3.3 As before, we now have the following Lemma. We omit the proof. Lemma 2. i For fixed x, H S is a bounded continuous function in ω and H S ω, x + H S ω, −x = 1. ii F S defined below is a proper distribution function and F S x + F S −x = 1. F S x = 2 Z 12 H S 2πs, xds. 3.4 2470 iii If LebC ′ = 0 then F S is continuous everywhere and may be expressed as F S x = Z x −∞ h Z 12 1 π p f 2πs e − t2 4π f 2πs ds i d t . 3.5 Further, F S is normal if and only if f is constant almost everywhere Lebesgue. iv If LebC ′ 6= 0 then F S is discontinuous only at x = 0. Theorem 2. Suppose Assumptions B and C hold and lim n →∞ 1 n 2 [np2] X k= 1 f 2πk n −32 −→ 0 for all 0 p 1. 3.6 Then the ESD of SC n converges in L 2 to F S given in 3.4–3.5. The same limit continues to hold for P T n . Remark 2. i 3.6 is satisfied if inf ω f ω 0. ii It is easy to check that the variance, µ 2 and the fourth moment µ 4 of F S equal R 12 4π f 2πsds and R 12 24π 2 f 2 2πsds respectively. By Cauchy-Schwartz inequality it follows that µ 4 µ 2 2 ≥ 3 and equal to 3 iff f ≡ 1 2π . In the latter case, F S is standard normal. This agrees with Remark 2 of Bose and Mitra [2002] under Assumption A.

3.3 Reverse circulant matrix

Define H R ω, x on [0, 2π] × R as H R ω, x = G x 2 2π f ω if f ω 6= 0 1 if f ω = 0, where Gx = 1 − e −x for x 0, is the standard exponential distribution function. Lemma 3. i For fixed x, H R ω, x is bounded continuous on [0, 2π]. ii F R defined below is a valid symmetric distribution function. F R x =    1 2 + R 12 H R 2πt, xd t if x 1 2 − R 12 H R 2πt, xd t if x ≤ 0. 3.7 iii If LebC ′ = 0 then F R is continuous everywhere and can be expressed as F R x =    1 − R 12 e − x2 2π f 2πt d t if x R 12 e − x2 2π f 2πt d t if x ≤ 0. 3.8 Further, F R is the distribution of the symmetric version of the square root of chisquare variable with two degrees of freedom if and only if f is constant almost everywhere Lebesgue. iv If LebC ′ 6= 0 then F R is discontinuous only at x = 0. 2471 The proof of the above lemma is omitted. Theorem 3. Suppose Assumptions B and C hold. Then the ESD of RC n converges in L 2 to F R given in 3.7–3.8. Remark 3. If

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52