k getdocf93c. 288KB Jun 04 2011 12:05:13 AM

The proof of the above lemma is omitted. Theorem 3. Suppose Assumptions B and C hold. Then the ESD of RC n converges in L 2 to F R given in 3.7–3.8. Remark 3. If {x i } are i.i.d, with finite 2 + δ moment, then f ω = 12π for all ω ∈ [0, 2π] and the LSD F R · agrees with 1.2 given earlier.

3.4 k

-Circulant matrix As mentioned before, it appears difficult to prove general results for all possible pairs k, n. We investigate two subclasses of the k-circulant.

3.4.1 n = k

g + 1 for some fixed g ≥ 2 For any d ≥ 1, let G d x = P d Y i= 1 E i ≤ x , where {E i } are i.i.d. E x p1. Note that G d is continuous. For any integer d ≥ 1, define H d ω 1 , . . . , ω d , x on [0, 2π] d × R ≥0 as H d ω 1 , . . . , ω d , x =    G d x 2d 2π d Q d i= 1 f ω i if Q d i= 1 f ω i 6= 0 1 if Q d i= 1 f ω i = 0. Lemma 4. i For fixed x, H d ω 1 , . . . , ω d , x is bounded continuous on [0, 2π] d . ii F d defined below is a valid continuous distribution function. F d x = Z 1 · · · Z 1 H d 2πt 1 , . . . , 2πt d , x d Y i= 1 d t i for x ≥ 0. 3.9 The proof of lemma is omitted. Theorem 4. Suppose Assumptions B and C hold. Suppose n = k g + 1 for some fixed g ≥ 2. Then as n → ∞, F n −12 A k ,n converges in L 2 to the LSD U 1 Q g i= 1 E i 12g where {E i } are i.i.d. with distribution function F g given in 3.9 and U 1 is uniformly distributed over the 2gth roots of unity, independent of the {E i }. Remark 4. If {x i } are i.i.d, then f ω = 12π for all ω ∈ [0, 2π] and the LSD is U 1 Q g i= 1 E i 12g where {E i } are i.i.d. E x p1, U 1 is as in Theorem 4 and independent of {E i }. This limit agrees with Theorem 3 of Bose, Mitra and Sen [2008]. Remark 5. Using the expression 2.8 for the characteristic polynomial, it is then not difficult to man- ufacture {k = kn} such that the LSD of n −12 A k ,n has some positive mass at the origin. For example, 2472 suppose the sequences k and n satisfy k g = −1 + sn where g ≥ 1 is fixed and s = on 13 . Fix primes p 1 , p 2 , . . . , p t and positive integers β 1 , β 2 , . . . , β t . Define e n = p β 1 1 p β 2 2 . . . p β t t n . Suppose k = p 1 p 2 . . . p t m → ∞. Then the ESD of en −12 A k , e n converges weakly in probability to the LSD which has 1 − Π t s= 1 p β s s −1 mass at zero, and rest of the probability mass is distributed as U 1 Q g i= 1 E i 12g where U 1 and {E i } are as in Theorem 4.

3.4.2 n = k

g − 1 for some g ≥ 2 For z i , w i ∈ R, i = 1, 2, .., g, and with {N i } i.i.d. N0, 1, define H g ω i , z i , w i , i = 1, . . . , g = P Bω 1 , ω 2 , .., ω g N 1 , ..., N 2g ′ ≤ z i , w i , i = 1, 2, .., g ′ . Lemma 5. i H g is a bounded continuous in ω 1 , . . . , ω g for fixed {z i , w i , i = 1, . . . , g }. ii F g defined below is a proper distribution function. F g z i , w i , i = 1, . . . , g = Z 1 · · · Z 1 H g 2πt i , z i , w i , i = 1, . . . , g Y d t i . 3.10 iii If LebC = 0 then F g is continuous everywhere and may be expressed as F g z i , w i , i = 1, .., g = Z · · · Z I {t≤z k ,w k ,k=1,..,g } h Z 1 · · · Z 1 I { Q f 2πu i 6=0} 2π g Q g i= 1 [π f 2πu i ] g Y i= 1 e − 1 2 t2 2i −1 +t2 2i π f 2πui Y du i i dt . where t = t 1 , t 2 , . . . , t 2g −1 , t 2g and dt = Q d t i . Further F g is multivariate with independent com- ponents if and only if f is constant almost everywhere Lebesgue. iv If LebC 6= 0 then F g is discontinuous only on D g = {z i , w i , i = 1, . . . , g : Q g i= 1 z i w i = 0}. The proof of lemma is omitted. Theorem 5. Suppose Assumptions B and C hold. Suppose n = k g − 1 for some g ≥ 2. Then as n → ∞, F n −12 A k ,n converges in L 2 to the LSD Q g i= 1 G i 1g where RG i , I G i ; i = 1, 2, . . . g has the distribution F g given in 3.10. Remark 6. If {x i } are i.i.d, with finite 2 + δ moment, then f ω ≡ 12π and the LSD simpli- fies to U 2 Q g i= 1 E i 12g where {E i } are i.i.d. E x p1, U 2 is uniformly distributed over the unit circle independent of {E i }. This agrees with Theorem 4 of Bose, Mitra and Sen [2008].

3.5 Simulations

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52