Proof of Theorem 1 getdocf93c. 288KB Jun 04 2011 12:05:13 AM

and this is conclusion i. To prove ii we use similar type of argument. Here we define new random variables ˜ Λ n with P ˜ Λ n = λ n ,k , λ n ,l = 1n 2 for 1 ≤ k, l ≤ n. Similarly define ˜E n and ˜ Y n . Again ˜ Λ n = ˜ E n + ˜ Y n and P kY n k ε = 1 n 2 n X k ,l=1 P k y n ,k , y n ,l k ε → 0, as n → ∞. So ˜ Λ n and ˜ E n will have same limiting distribution and hence conclusion ii holds. We use normal approximation heavily in our proofs. Lemma 7 is a fairly standard consequence of normal approximation and follows easily from Bhattacharya and Ranga Rao [1976] Corollary 18.1, page 181 and Corollary 18.3, page 184. We omit its proof. Part i will be used in Section 4.1– 4.4 and Part ii will be used in Section 4.4. Lemma 7. Let X 1 , . . . , X k be independent random vectors with values in R d , having zero means and an average positive-definite covariance matrix V k = k −1 P k j= 1 C ovX j . Let G k denote the distribution of k −12 T k X 1 + . . . + X k , where T k is the symmetric, positive-definite matrix satisfying T 2 k = V −1 k , n ≥ 1. If for some δ 0, EkX j k 2+δ ∞, then there exists C 0 depending only on d, such that i sup B ∈C |G k B − Φ d B| ≤ C k −δ2 [λ min V k ] −2+δ ρ 2+δ ii for any Borel set A, |G k A − Φ d A| ≤ C k −δ2 [λ min V k ] −2+δ ρ 2+δ + 2 sup y ∈R d Φ d ∂ A η − y where Φ d is the standard d dimensional normal distribution function, C is the class of all Borel mea- surable convex subsets of R d , ρ 2+δ = k −1 P k j= 1 E kX j k 2+δ and η = Cρ 2+δ n −δ2 .

4.1 Proof of Theorem 1

The proof for circulant matrix mainly depends on Lemma 7 which helps to use normal approximation and, Lemma 8 given below which allows us to approximate the eigenvalues by appropriate partial sums of independent random variables. The latter follows easily from Fan and Yao [2003] Theorem 2.14ii, page 63. We have provided a proof in Appendix for completeness. For k = 1, 2, · · · , n, define ξ 2k −1 = 1 p n n −1 X t= ε t cosω k t , ξ 2k = 1 p n n −1 X t= ε t sinω k t . Lemma 8. Suppose Assumption B holds and {ε t } are i.i.d random variables with mean 0, variance 1. For k = 1, 2, · · · , n, write λ n ,k = 1 p n n −1 X l= x l e i ω k l = ψe i ω k [ξ 2k −1 + iξ 2k ] + Y n ω k , then we have max ≤kn E |Y n ω k | → 0 as n → ∞. 2476 Proof of Theorem 1: We first assume LebC = 0. Note that we may ignore the eigenvalue λ n and also λ n 2 whenever n is even since they contribute atmost 2n to the ESD F n x, y. So for x, y ∈ R, E [F n x, y] s n −1 n −1 X k= 1,k 6=n2 P b k ≤ x, c k ≤ y. Define for k = 1, 2, · · · , n, η k = ξ 2k −1 , ξ 2k ′ , Y 1n ω k = R[Y n ω k ], Y 2n ω k = I [Y n ω k ], where Y n ω k are same as defined in Lemma 8. Then b k , c k ′ = Bω k η k + Y 1n ω k , Y 2n ω k ′ . Now in view of Lemma 6 and Lemma 8, to show E[F n x, y] → F C x, y it is sufficient to show that 1 n n −1 X k= 1,k 6=n2 P Bω k η k ≤ x, y ′ → F C x, y. To show this, define for 1 ≤ k ≤ n − 1, except for k = n2 and 0 ≤ l ≤ n − 1, X l ,k = p 2ε l cosω k l , p 2ε l sinω k l ′ . Note that E X l ,k = 0 4.2 n −1 n −1 X l= C ovX l ,k = I 4.3 sup n sup 1 ≤k≤n [n −1 n −1 X l= E k X l k k 2+δ ] ≤ C ∞. 4.4 For k 6= n2 B ω k η k ≤ x, y ′ = B ω k n −12 n −1 X l= X l ,k ≤ p 2x, p 2 y ′ . Since {r, s : Bω k r, s ′ ≤ p 2x, p 2 y ′ } is a convex set in R 2 and {X l ,k , l = 0, 1, . . . n − 1} satisfies 4.2–4.4, we can apply Part i of Lemma 7 for k 6= n2 to get P Bω k n −12 n −1 X l= X l ,k ≤ p 2x, p 2 y ′ − P Bω k N 1 , N 2 ′ ≤ p 2x, p 2 y ′ ≤ C n −δ2 [n −1 n −1 X l= E kX l k k 2+δ ] ≤ C n −δ2 → 0, as n → ∞. Therefore lim n →∞ 1 n n −1 X k= 1,k 6=n2 P B ω k η k ≤ x, y ′ = lim n →∞ 1 n n −1 X k= 1,k 6=n2 H C 2πk n , x, y = Z 1 H C 2πs, x, yds. 2477 Hence E [F n x, y] ∼ n −1 n −1 X k= 1,k 6=n2 P b k ≤ x, c k ≤ y → Z 1 H C 2πs, x, yds. 4.5 Now, to show V [F n x, y] → 0, it is enough to show that 1 n 2 n X k 6=k ′ ;k,k ′ =1 C ovJ k , J k ′ = 1 n 2 n X k 6=k ′ ;k,k ′ =1 E J k , J k ′ − EJ k EJ k ′ → 0. 4.6 where for 1 ≤ k ≤ n, J k is the indicator that {b k ≤ x, c k ≤ y}. Now as n → ∞, 1 n 2 n X k 6=k ′ ;k,k ′ =1 E J k EJ k ′ = 1 n n X k= 1 E J k 2 − 1 n 2 n X k= 1 E J k 2 → Z 1 H C 2πs, x, yds 2 . So to show 4.6, it is enough to show as n → ∞, 1 n 2 n X k 6=k ′ ;k,k ′ =1 E J k , J k ′ → Z 1 H C 2πs, x, yds 2 . Along the lines of the proof used to show 4.5 one may now extend the vectors of two coordinates defined above to ones with four coordinates and proceed exactly as above to verify this. We omit the routine details. This completes the proof for the case LebC = 0. When LebC 6= 0, we have to show 4.1 only on D c 1 of Lemma 1. All the above steps in the proof will go through for all x, y in D c 1 . Hence if LebC 6= 0, we have our required LSD. This completes the proof of Theorem 1.

4.2 Proof of Theorem 2

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52