KARAKTERISTIK FISIKOKIMIA TEPUNG PISANG TERMODIFIKASI SECARA FERMENTASI SPONTAN DAN

35

4. KARAKTERISTIK FISIKOKIMIA TEPUNG PISANG TERMODIFIKASI SECARA FERMENTASI SPONTAN DAN

SIKLUS PEMANASAN BERTEKANAN-PENDINGINAN [Physicochemical characteristics of modified banana flour by fermentation and autoclaving-cooling cycles] ABSTRAK Kajian tentang karakteristik fisikokimia antara tepung pisang alami dan tepung pisang modifikasi dilakukan pada pisang var agung semeru Musa paradisiaca formatypica . Tepung pisang alami kontrol dihasilkan dengan mengeringkan irisan pisang, menghancurkan dan mengayak tepung dengan ayakan 80 mesh. Tepung pisang modifikasi dihasilkan dengan cara irisan pisang diberi perlakuan fermentasi spontan suhu kamar, 24 jam dilanjutkan dengan satu atau dua siklus pemanasan bertekanan 121 o C, 15 menit yang diikuti dengan pendinginan 4 o C, 24 jam sebelum dilakukan proses pengeringan. Hasil penelitian menunjukkan bahwa bakteri asam laktat tumbuh mendominasi hingga mencapai 10 6 CFUml selama fermentasi spontan pisang. Modifikasi proses mempengaruhi karakteristik fisikokimia tepung pisang. Fermentasi meningkatkan kadar amilosa. Dua siklus pemanasan bertekanan-pendinginan meningkatkan pati resisten RS tepung pisang dengan nyata 28.88 bk dibandingkan dengan yang satu siklus 24.72 bk. Proses pemanasan bertekanan-pendinginan merusak granula pati dan menurunkan kristalinitas tepung pisang dari 18.74-20.08 menjadi 6.98-9.52. Difraksi sinar X menunjukkan granula pati pisang adalah granula tipe C yang merupakan campuran dari granula tipe A dan tipe B. ABSTRACT Studies on the physicochemical characteristics on the native banana flour and modified banana flour were carried out on “agung var semeru” banana Musa paradisiaca formatypica. Native banana flour was produced by drying the banana slice, ground and passed through a 80 mesh screen. Modified banana flour were produced by spontaneous fermentation room temperature, 24 h and one or two cycles of autoclaving 121 o C, 15 min followed by cooling 4 o C, 24 hof the slices before drying process. The results showed that lactic acid bacteria were the dominating bacteria up to 10 6 CFUml during spontaneous fermentation of banana slices. The modification processes influenced physicochemical characteristics of banana flour. Spontaneous fermentation increased amylose content. Two cycles of autoclaving-cooling significantly increased resistant starch content of banana flour 28.88 db than the one cycle 24.72 db. Retrogradation process destroyed the granules and decreased the crystalinity from 18.74 - 20.08 to 6.98 - 9.52. X-ray diffraction showed that the starch granule was type C granule as a mixture of A and B polymorphs. 36 Keywords: Musa paradisiaca formatypica, spontaneous fermentation, autoclaving-cooling process. PENDAHULUAN Pisang merupakan salah satu bahan pangan yang sebagian besar terdiri atas karbohidrat terutama pati. Pisang dapat dibagi menjadi empat jenis yaitu: pisang jenis banana yang dimakan dalam keadaan segar setelah buahnya masak, pisang jenis plantain yang dimakan setelah diolah, pisang berbiji yang dimanfaatkan daunnya dan pisang yang diambil seratnya. Salah satu jenis plantain yaitu pisang var agung semeru Musa paradisiaca formatypica yang banyak dibudidayakan di Kabupaten Lumajang Jawa Timur dengan produktivitas mencapai lebih dari 57 ribu ton per tahun RPJM Deptan Lumajang 2009. Tepung pisang cukup prospektif untuk dikembangkan sebagai pangan fungsional. Manfaat pengolahan pisang menjadi tepung di antaranya yaitu lebih tahan disimpan, lebih mudah dalam pengemasan dan pengangkutan, lebih praktis untuk diversifikasi produk olahan, mampu memberikan nilai tambah buah pisang, mampu meningkatkan nilai gizi buah melalui proses fortifikasi selama pengolahan, dan menciptakan peluang usaha untuk pengembangan agroindustri pedesaan. Teknologi pengolahan tepung pisang secara konvensional dilakukan dengan mengeringkan buah pisang mentah yang selanjutnya dihancurkan dan diayak dengan ukuran mesh 60-100 Deptan 2009. Modifikasi proses pada pati pisang telah banyak dilakukan untuk meningkatkan kadar pati resisten resistant starchRS. Pati yang diotoklaf pada suhu 121 o C selama 1 jam diikuti dengan pendinginan 4 o C selama 24 jam dan diulang sebanyak tiga siklus mampu meningkatkan kadar RS dari 1.51 menjadi 16.02 Saguilan et al. 2005. Soto et al. 2004 juga melakukan modifikasi pati pisang untuk meningkatkan kadar RS dengan menggunakan metode debranching oleh enzim pululanase yang dikombinasi dengan pemanasan otoklaf dan pendinginan. 37 Modifikasi proses pada tepung pisang telah dilakukan oleh Tribess et al. 2009 untuk meningkatkan kadar RS selama proses pengeringan chip pisang dengan mengatur kecepatan udara 0.6 - 1.4 mdetik pada suhu 55 o C. Jenie et al. 2009 melaporkan bahwa fermentasi spontan irisan pisang yang dikombinasi dengan satu siklus pemanasan bertekanan-pendinginan mampu meningkatkan kandungan RS tepung pisang lebih dari 17 berat kering hampir dua kali. Pengaruh dua siklus pemanasan bertekanan-pendinginan setelah proses fermentasi belum dilakukan. Oleh karena itu penelitian ini bertujuan untuk mengetahui karakteristik fisikokimia tepung pisang yang dihasilkan melalui proses modifikasi secara fermentasi spontan yang dikombinasi dengan satu atau dua siklus pemanasan bertekanan-pendinginan dalam upaya meningkatkan kadar RS. BAHAN DAN METODE Bahan Pisang var agung semeru Musa paradisiaca formatypica diperoleh dari Desa Burno dan Desa Kandang Tepus Kecamatan Senduro Kabupaten Lumajang Propinsi Jawa Timur. Pisang dipanen pada minggu ke 16 dari awal pembungaan dengan tingkat kematangan tahap 1 yaitu pisang tua dengan kulit hijau merata. Metode Pembuatan Tepung Pisang Modifikasi melalui Fermentasi Spontan dan Siklus Pemanasan Bertekanan-Pendinginan Pisang diiris dengan ketebalan ± 5mm, selanjutnya direndam dalam akuades steril 3:4 dan difermentasi selama 24 jam pada suhu kamar. Pisang yang sudah difermentasi selama 24 jam kemudian ditiriskan dan diberi pemanasan bertekanan dengan menggunakan otoklaf 121 o C, 15 menit yang dilanjutkan dengan pendinginan 4 o C, 24 jam. Proses pemanasan bertekanan-pendinginan dilakukan sebanyak satu dan dua siklus. Selanjutnya pisang dikeringkan 50 o C, 16 jam dan dihaluskan serta diayak dengan ayakan mesh 80. Tepung pisang kontrol dibuat 38 dari irisan pisang yang langsung dikeringkan dan dihaluskan serta diayak tanpa proses modifikasi. Perlakuan diulang sebanyak dua kali dengan dua kali ulangan teknik sampling bahan baku di lahan budidaya pisang var agung semeru. Pengamatan Populasi Mikroba Selama Fermentasi Spontan Selama fermentasi spontan irisan pisang dilakukan pengamatan jumlah mikroba untuk mengetahui populasi kapang, khamir, bakteri pendegradasi pati, bakteri asam laktat, total bakteri, pH dan jumlah asam laktat tertitrasi. Sebanyak 10 mL cairan fermentasi pisang diambil secara periodik pada jam pada jam ke-0, 12 dan 24, selanjutnya ditambah dengan 90 ml akuades steril dan dilakukan pengenceran berseri. Tiga seri hasil pengenceran dipipet sebanyak 1 mL dan dilakukan pemupukan metode tuang pada media Potato Dextrose Agar PDA yang mengandung 10 asam tartarat dengan inkubasi suhu kamar untuk kapang, pada media PDA dengan inkubasi suhu 40 o C untuk khamir, pada media de Mann Rogosa Sharp Agar MRSA dengan inkubasi suhu 37 o C untuk bakteri asam laktat, pada media Starch Agar SA dengan inkubasi suhu 37 o C untuk bakteri pendegradasi pati, dan pada media Nutrient Agar NA dengan inkubasi suhu 37 o C untuk total bakteri yang masing-masing diinkubasi selama 48-72 jam. Nilai pH diukur dengan menggunakan pHmeter, sedangkan total asam laktat ditentukan dengan menggunakan metode titrimetri. Analisis Komposisi Kimia Tepung pisang dianalisis kadar air, abu, protein, lemak dan kadar karbohidrat AOAC 1999. Selain itu juga dilakukan analisis kadar pati, amilosa dan daya cerna pati AACC 2000. Analisis Komposisi Pati RDS, SDS dan RS Komposisi pati yang meliputi kadar pati tercerna cepat rapid digestable starch RDS, pati tercerna lambat slowly digestable starchSDS dan pati resisten 39 resistant starchRS ditentukan dengan menggunakan metode Englyst et al. 1992. Tepung pisang sebanyak 1 g ditempatkan dalam tabung sentrifus. Sampel dicuci menggunakan 8 ml etanol 80 selanjutnya disentrifus pada kecepatan 554 × g selama 10 menit dan diulang dua kali. Residu yang merupakan pati ditambah 20 mL buffer sodium asetat 0.1M pH 5.2, selanjutnya dididihkan dalam penangas air selama 30 menit. Sampel didinginkan dan ditambah 5 mL larutan enzim yang mengandung ekstrak pankreatin dan amiloglukosidase. Larutan enzim disiapkan dengan cara mensuspensikan 3.0 g pankreatin Sigma, Cat. No. P7545 ke dalam 20 mL air deionisasi, selanjutnya distirer selama10 menit pada suhu ruang dan disentrifus pada 1500 g selama 10 menit. Sebanyak 13.5 mL supernatan pankreatin ditambah amiloglukosidase 210 U Sigma Cat. No. A7095 dan 1.25 mL air deionisasi. Selanjutnya sampel diinkubasi dalam inkubator bergoyang pada suhu 37 o C selama 30 menit untuk menentukan kadar pati cepat tercerna RDS dan 120 menit untuk pati lambat tercerna SDS. Jumlah gula hasil hidrolisis pati diukur dengan menggunakan metode DNS. Kadar pati resisten dihitung sebagai jumlah pati dikurangi jumlah pati yang terhidrolisis dengan penjabaran rumus sebagai berikut: Kadar pati resisten = [pati-RDS-SDSpati] x 100 Pengamatan Granula Pati Pati pisang 0.1 g disuspensikan dalam 1 mL akuades kemudian diambil dua tetes dan ditempatkan pada kaca preparat. Struktur granula diamati dengan menggunakan mikroskop polarisasi Olympus C-35AD-4 Japan pada perbesaran 400 kali Santiago et al. 2004. Analisis Kristalinitas Tepung pisang disetimbangkan dalam wadah RH 100 pada suhu ruang selama 24 jam. Difraktogram sinar X tepung pisang ditentukan dengan difraktometer sinar X Shimadzu XRD-7000 Maxima. Daerah scanning dimulai 40 dari sudut difraksi 5 o sampai 40 o dengan ukuran 0.02 o , 0.6 detik pada radiasi Cu, 40 kV, 30 mA Waliszewski et al. 2003; Soto et al. 2007. Tingkat kristalinitas tepung pisang ditentukan dengan menghitung luas area grafik landai smooth dibagi dengan luas area utuh. Analisis Statistik Data dianalisis menggunakan prosedur Analysis of Variance ANOVA. Untuk mengetahui adanya perbedaan dilakukan uji lanjut beda nyata terkecil pada taraf uji 5 p ≤ 0.05. HASIL DAN PEMBAHASAN Populasi Mikroba, pH dan Total Asam Laktat selama Fermentasi Spontan Populasi mikroba yang tumbuh selama fermentasi spontan pisang var agung semeru disajikan pada Gambar 4.1. Mikroba yang tumbuh selama 24 jam fermentasi spontan pisang mentah adalah bakteri yang lebih didominasi oleh bakteri asam laktat BAL, sedangkan khamir dan kapang tidak tumbuh hingga fermentasi 24 jam. Gambar 4.1 Populasi bakteri pendegradasi pati; bakteri asam laktat dan total bakteri selama fermentasi spontan pisang 1 2 3 4 5 6 7 8 9 12 24 L o g B a k te ri C F U m l Lama Fermentasi Jam 41 Populasi bakteri meningkat selama fermentasi hingga jam ke-24. Populasi BAL hingga jam ke-24 sekitar 6 log CFUmL. Abdillah 2010 melaporkan bahwa fermentasi spontan pisang hingga jam ke-100 juga didominasi oleh BAL. Reddy et al . 2008 menjelaskan BAL mampu tumbuh pada bahan pangan berpati karena dapat menghasilkan enzim amilase untuk mendegradasi pati menjadi glukosa sebagai sumber karbon selama pertumbuhannya. BAL tersebut dikenal sebagai bakteri asam laktat amilolitik. Pada penelitian ini diduga BAL yang berperan dalam fermentasi pisang adalah BAL amilolitik karena jumlah bakteri pendegradasi pati mengalami peningkatan hingga pengamatan jam ke-24. Peningkatan jumlah BAL selama fermentasi seiring dengan terjadinya penurunan pH dari pH awal 6.36 menjadi pH 5.36 pada jam ke-24. Penurunan pH tersebut disebabkan oleh metabolit yang dihasilkan BAL yaitu asam laktat atau asam organik lainnya. Selama fermentasi pisang, produksi asam laktat meningkat hingga mencapai 0.11 Tabel 4.1. Vishnu et al. 2006 melaporkan bahwa beberapa strain Lactobacillus spp mampu secara langsung memfermentasi karbohidrat menjadi asam laktat. Tabel 4.1 Nilai pH, konsentrasi asam laktat selama fermentasi spontan pisang Lama Fermentasi Jam pH Asam Laktat Tertitrasi mLmL 6.36 ± 0.08 0.02 ± 0.00 12 6.12 ± 0.10 0.04 ± 0.00 24 5.36 ± 0.24 0.11 ± 0.01 Asam laktat merupakan asam organik yang tidak menguap pada suhu kamar dan dapat berperan sebagai antimikroba yang mampu menghambat pertumbuhan bakteri lain. FDA USA juga telah mengklasifikasikan asam laktat ke dalam GRAS Generally Recognized As Safe untuk digunakan sebagai bahan tambahan pangan dan kepentingan lain seperti sebagai pengawet produk pangan Datta Henry 2006. Asam laktat yang dihasilkan oleh BAL diduga dapat bereaksi dengan pati pisang sehingga membentuk kopolimer pati-asam laktat. Gong et al. 2006 42 menjelaskan bahwa kopolimer pati-asam laktat dapat menurunkan reaktivitas gugus hidroksil pada unit glukopiranosa pati yaitu pada C6, C3 dan C2 sehingga pati menjadi lebih resisten terhadap enzim pencernaan. Fermentasi selama 24 jam tidak menyebabkan perubahan pada tekstur irisan pisang. Abdillah 2010 melaporkan fermentasi pisang lebih dari 24 jam menghasilkan tektur yang lebih lunak akibat degradasi oleh mikroba dan terjadi kehilangan rendemen hingga mencapai lebih dari 30. Komposisi Kimia Tepung Pisang Pengaruh fermentasi dan retrogradasi terhadap komposisi kimia tepung pisang disajikan pada Tabel 4.2. Tepung pisang hasil fermentasi memiliki kadar abu, dan karbohidrat lebih rendah daripada tepung pisang tanpa modifikasi kontrol, sedangkan kadar lemak dan protein tepung pisang modifikasi tidak berbeda nyata dengan tepung pisang kontrol. Tabel 4.2 Pengaruh fermentasi spontan dan siklus pemanasan bertekanan- pendinginan terhadap komposisi kimia tepung pisang Komposisi bb Tanpa Fermentasi Spontan Fermentasi Spontan Tanpa PBP Satu Siklus PBP Dua Siklus PBP Tanpa PBP Satu Siklus PBP Dua Siklus PBP Kadar Air 5.07 ± 0.05 f 7.18 ± 0.06 d 6.71 ± 0.02 e 7.77 ± 0.03 c 8.05 ± 0.07 b 9.72 ± 0.03 a Abu 2.18 ± 0.05 a 1.99 ± 0.04 b 1.84 ± 0.04 c 1.77 ± 0.01 d 1.60 ± 0.02 f 1.68 ± 0.01 e Lemak 1.02 ± 0.03 a 1.05 ± 0.01 a 1.07 ± 0.06 a 1.09 ± 0.06 a 1.01 ± 0.01 a 1.07 ± 0.04 a Protein 1.99 ± 0.03 a 2.08 ± 0.06 a 2.04 ± 0.06 a 1.89 ± 0.04 a 1.93 ± 0.03 a 1.86 ± 0.04 a Karbohidrat 88.76± 0.06 a 87.64 ±0.02 c 88.32 ± 0.05 b 87.47 ± .003 d 87.46 ± 0.08 d 85.66 ± 0.03 e PBP = Pemanasan Bertekanan-Pendinginan Angka-angka pada baris yang sama yang diikuti dengan huruf yang sama menunjukkan nilai tidak berbeda nyata pada taraf uji ≤ 0.05 Modifikasi proses fermentasi pisang dan pemanasan bertekanan- pendinginan menyebabkan penurunan kadar karbohidrat. Hal ini diduga karena mikroba yang tumbuh sudah memanfaatkan komponen karbohidrat sebagai sumber karbon bagi pertumbuhannya. Selama proses pemanasan bertekanan pati pecah dan tergelatinisasi, selanjutnya amilosa akan teretrogradasi pada saat 43 pendinginan. Proses pengeringan juga menyebabkan pati mengalami reaksi pencoklatan sehingga dapat mengurangi kandungan karbohidrat tepung pisang. Pemanasan suhu tinggi dan pengeringan dalam oven dapat menyebabkan terbentuknya komponen pirodekstrin dari karbohidrat Carrera et al. 2007. Tabel 4.3 Pengaruh fermentasi spontan dan siklus pemanasan bertekanan- pendinginan terhadap komposisi pati dan daya cerna tepung pisang Komposisi bk Tanpa Fermentasi Spontan Fermentasi Spontan Tanpa PBP Satu Siklus PBP Dua Siklus PBP Tanpa PBP Satu Siklus PBP Dua Siklus PBP Pati 1 70.16±0.12 a 69.86±0.03 a 67.12±0.86 d 69.79±0.14 a 68.80±0.40 b 67.67± 0.52 c Amilosa 2 13.56±0.05 f 14.10±0.06 e 14.52± 0.01 d 15.44±0.01 c 15.66±0.04 b 16.54± 0.03 a RDS 2 38.15±0.05 a 23.84±0.34 c 21.53±0.07 d 32.64±0.16 b 23.99± 0.11 c 18.26± 0.33 e SDS 2 24.66±0.01 c 26.03±0.28 b 19.42±0.14 d 32.80±0.35 a 17.51± 0.11 f 18.39± 0.12 e RS 2 10.32±0.30 f 29.34±0.06 d 39.13±0.03 b 6.78± 0.02 e 35.93±0.10 c 42.68± 0.33 a RS 1 7.24±0.30 f 20.50±0.06 d 26.26±0.03 b 4.73± 0.02 e 24.72±0.10 c 28.88± 0.33 a Daya Cerna 2 69.67±0.25 b 55.88±0.05 c 47.59±0.01 e 72.01±0.01 a 49.22±0.07 d 43.21± 0.06 f PBP = Pemanasan Bertekanan-Pendinginan RDS = rapid digestable starch SDS = slowly digestable starch RS = resistant starch 1 = berat kering tepung 2 = berat kering pati Angka-angka pada baris yang sama yang diikuti dengan huruf yang sama menunjukkan nilai tidak berbeda nyata pada taraf uji 0.05 Tabel 4.3 menunjukkan kadar pati resisten menurun dari 7.24 tepung pisang kontrol menjadi 4.73 setelah fermentasi selama 24 jam. Hal ini disebabkan karena granula pati mengalami pengembangan swelling selama perendaman dan menjadi lebih mudah terhidrolisis oleh enzim mikroorganisme sehingga sifat resisten dan kristalinitas pati menjadi berkurang Zang et al. 2005. Pati resisten yang terkandung dalam tepung pisang kontrol merupakan RS2 yaitu pati resisten yang terbentuk karena struktur granula pati sedemikian rupa sehingga sulit didegradasi oleh enzim alfa amilase pencernaan Tribess et al. 2009. Ambriz et al. 2008 melaporkan bahwa kadar pati resisten tepung pisang menurun dengan adanya proses likuifikasi menggunakan enzim amilase Bacillus subtilis . Hal ini terjadi akibat hidrolisis pati oleh enzim tersebut menghasilkan gula sederhana. Kadar amilosa tepung pisang meningkat oleh fermentasi selama 24 jam. Peningkatkan ini diduga karena disebabkan oleh terjadinya pemotongan struktur cabang dari amilopektin debranching menghasilkan oligomer dengan derajat 44 polimer lebih pendek seperti amilosa. Selanjutnya amilosa akan mengalami retrogradasi setelah diberi perlakuan pemanasan bertekanan-pendinginan. Amilosa yang teretrogradasi berperan dalam meningkatkan kadar RS Soto et al. 2007. Niba Hoffman 2003 melaporkan bahwa kadar RS biji sorgum juga meningkat hingga 60 dengan fermentasi spontan biji sorgum pada suhu 37 o C selama 10 hari. Fermentasi sangat lama karena biji sorgum memiliki lapisan aleuron yang tebal sehingga diperlukan waktu lebih lama untuk absorbsi air dan berlangsungnya fermentasi spontan. Dua siklus pemanasan bertekanan-pendinginan menghasilkan kadar RS tepung pisang lebih tinggi daripada yang satu siklus baik pada pisang yang tanpa difermentasi dari 20.50 menjadi 26.26 maupun pisang yang difermentasi dari 24.72 menjadi 28.88, sedangkan kadar RS tepung pisang kontrol adalah 7.24. Kombinasi proses fermentasi spontan dengan dua siklus pemanasan bertekanan-pendinginan retrogradasi mampu meningkatkan kadar RS tepung pisang dari 7.24 menjadi 28.88. Pati resisten yang dihasilkan dari proses retrogradasi merupakan pati resisten tipe III RS3 yang merupakan amilosa teretrogradasi Soto et al. 2004. Saguilan et al. 2005 melakukan modifikasi di tingkat pati pisang plantain dengan menggunakan tiga siklus pemanasan bertekanan-pendinginan sehingga kadar RS meningkat hingga 10 kali lipat. Kadar RS yang dihasilkan dari modifikasi di tingkat pati lebih tinggi, akan tetapi aplikasinya memiliki tahapan yang lebih banyak terutama tahap isolasi pati. Proses modifikasi pada tepung pisang seperti yang dilakukan pada penelitian ini lebih mudah dan lebih efisien yaitu fermentasi dan retrogradasi dilakukan pada pisang tanpa perlu mengisolasi patinya terlebih dahulu. Tepung yang dihasilkan dapat diaplikasikan langsung sebagai tepung pensubstitusi pada pembuatan produk pangan seperti roti, cookies dan brownies Jenie et al. 2010. Daya cerna pati meningkat dengan adanya proses fermentasi dari 69.67 tepung pisang kontrol menjadi 72.01 tepung pisang fermentasi, sedangkan proses pemanasan bertekanan-pendinginan menurunkan daya cerna pati. Komposisi pati yang dapat dicerna menurun dengan semakin meningkatnya kadar RS. Hasil analisis daya cerna secara in vitro juga menurun hampir 50 pada 45 tepung yang dihasilkan dari perlakuan fermentasi dengan retrogradasi. Farhat et al . 2001 melaporkan bahwa daya cerna pati kentang meningkat dengan adanya gelatinisasi akan tetapi menurun jika pati mengalami retrogradasi. Sifat Birefringence Pati Pisang Modifikasi proses secara dua siklus pemanasan bertekanan-pendinginan mampu meningkatkan kadar RS dengan nyata. Oleh karena itu dalam pembahasan selanjutnya mengamati karakteristik fisik yaitu sifat birefringence granula pada tepung tanpa perlakuan pemanasan bertekanan-pendinginan untuk mewakili tepung pisang yang mengandung RS2 dan tepung dengan kandungan RS tinggi tepung dari proses fermentasi maupun tanpa fermentasi yang dikombinasi dengan dua siklus pemanasan bertekanan-pendinginan untuk mewakili tepung pisang yang mengandung RS3. Gambar 4.2 menunjukkan granula pati tepung pisang kontrol dan fermentasi menghasilkan efek birefringence pada pengamatan dengan mikroskop polarisasi. A B C D Gambar 4.2 Pengaruh proses fermentasi dan dua siklus pemanasan bertekanan- pendinginan terhadap sifat birefringence granula pati pisang. A . kontrol; B fermentasi; C dua siklus pemanasan bertekanan- pendinginan; D fermentasi spontan dengan dua siklus pemanasan bertekanan-pendinginan pada perbesaran 400x 46 Efek birefringence terbentuk dari struktur ganula pati utuh yang tersusun atas daerah amorf dan daerah kristalin. Bagian amorf dari granula pati dapat menyerap air dingin hingga 30 tanpa merusak struktur pati secara keseluruhan, sedangkan bagian kristalin dari granula pati lebih sulit menyerap air Eliason Gudmunsson 1996. Granula pati pisang var agung semeru memiliki ukuran panjang sekitar 50 – 80 µm dengan diameter 20 – 40 µm. Eggleston et al. 1992 melaporkan bahwa ukuran granula pati pisang plantain beragam mulai dari 7.8 – 61.3 µm dengan diameter rata-rata adalah 26 µm. Proses mekanik dan pengolahan panas basah hidrotermal dapat merusak granula pati. Pati pisang plantain tidak membentuk granula lagi setelah menjadi pasta Santiago et al. 2004. Aktivitas enzim seperti amilase dan pululanase akan menghidrolisis amilosa dan amilopektin sehingga merusak struktur granula pati. Hasil hidrolisis ini menyebabkan granula nampak memiliki lubang porous dengan pengamatan mikroskop elektron Wijbenga 2000; Zang et al. 2005. Reddy et al. 2008 menjelaskan bahwa bakteri asam laktat dapat menghasilkan amilase dan pululanase sehingga mampu menghidrolisis pati menjadi gula sederhana. Pelepasan cabang debranching amilopektin oleh pululanase menghasilkan polimer glukosa rantai lurus yang merupakan amilosa dengan derajat polimerisasi DP lebih kecil. Semakin banyak kadar amilosa maka akan meningkatkan jumlah pati teretrogradasi akibat pemanasan basah dan pendinginan sehingga akan meningkatkan kadar RS3 Soto et al. 2004; Soto et al. 2007. Gambar 4.2 C dan D memperlihatkan struktur granula pati yang rusak akibat pemanasan basah bertekanan sebagai bentuk kristal yang tidak beraturan dan tidak menghasilkan sifat birefringence yang berarti tidak ada lagi bentuk granula. Saguilan et al. 2005 menjelaskan bahwa pemanasan basah menyebabkan pati mengalami gelatinisasi sehingga struktur granula menjadi rusak sedangkan pendinginan menyebabkan sineresis dan adanya proses yang diulang meningkatkan retrogradasi pada gel pati. Kristalinitas Tepung Pisang 47 Granula pati tepung pisang kontrol dan tepung pisang modifikasi fermentasi menunjukkan adanya puncak peak difraksi yang kuat pada sudut 17-18 o dan sudut 23-24 o Gambar 4.3. Puncak difraksi pada sudut 17 o merupakan puncak difraksi untuk granula pati tipe A dan puncak pada sudut 24 o merupakan puncak difraksi untuk granula pati tipe B sehingga tepung pisang baik yang alami maupun yang fermentasi dapat digolongkan sebagai granula pati tipe C yaitu granula pati campuran dari tipe A dan tipe B. Beberapa pisang plantain dilaporkan memiliki granula pati tipe C. Granula tipe A memiliki amilosa dengan berat molekul lebih kecil, cabang amilopektin lebih pendek dan tingkat kristalinitas lebih tinggi, sedangkan granula tipe B memiliki amilosa dengan berat molekul lebih besar, cabang amilopektin lebih panjang dan tingkat kristalinitas lebih rendah Hizukuri, 1961 ; Waliszewski et al. 2003; Soto et al. 2007. Gambar 4.3 Pengaruh fermentasi spontan terhadap intensitas difraksi tepung pisang. kontrol, fermentasi Tepung pisang alami memiliki tingkat kristalinitas lebih tinggi 20.08 ± 0.09 a dibandingkan tepung pisang fermentasi 18.74 ± 0.11 b Lampiran 2b. Penurunan tingkat kristalinitas pada tepung pisang fermentasi mengindikasikan terjadi perubahan bagian kristalin menjadi lebih amorf selama fermentasi. Perubahan ini disebabkan oleh degradasi amilopektin sebagai komponen pati yang berperan dalam pembentukan bagian kristalin pada granula pati. Bagian amorf lebih mudah terdegradasi oleh enzim pencernaan dan mengurangi sifat resistensi 50 100 150 200 250 300 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 In te n si ta s Sudut Difraksi 2 δ o 48 pati Eliason Gudmunsson 1996. Hal ini juga memperkuat dugaan sebelumnya bahwa hidrolisis parsial pati terjadi selama fermentasi spontan yang menyebabkan perubahan struktur granula pati menjadi lebih mudah didegradasi oleh amilase dan menurunkan kadar RS2. Tepung pisang hasil dari proses modifikasi dua siklus pemanasan bertekanan-pendinginan baik tanpa fermentasi maupun dengan fermentasi memiliki puncak peak difraksi sinar X yang kuat pada sudut difraksi 17 o dan 24 o Gambar 4.4. Puncak difraksi sinar X pada tepung pisang modifikasi pemanasan bertekanan-pendinginan masih berasosiasi dengan puncak difraksi sinar X tepung pisang alami, akan tetapi tingkat kristalilitas yang dihasilkan lebih rendah pada tepung pisang modifikasi dua siklus retrogradasi. Hal ini disebabkan karena struktur granula pati rusak sehingga menurunkan tingkat kristalinitas tepung. Kristalinitas pada tepung pisang modifikasi masih terdeteksi akibat terbentuknya amilosa teretrogradasi Soto et al. 2007. Gambar 4.4 Pengaruh dua siklus pemanasan bertekanan-pendinginan terhadap intensitas difraksi tepung pisang. tanpa fermentasi spontan, dengan fermentasi spontan Proses retrogradasi dengan cara pemanasan bertekanan-pendinginan pada irisan pisang menghasilkan tingkat kristalinitas sangat rendah yaitu 9.52 ± 0.18 c untuk tepung pisang dari proses dua siklus pemanasan bertekanan-pendinginan dan 6.98 ± 0.07 d untuk tepung pisang dari proses fermentasi dengan dua siklus pemanasan bertekanan-pendinginan Lampiran 2b. Tingkat kristalinitas tepung 50 100 150 200 250 300 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 In te n si ta s Sudut Difraksi 2 δ o 49 pisang yang rendah berkorelasi positif dengan terjadinya kerusakan granula pati akibat retrogradasi yaitu gelatinisasi pati oleh suhu tinggi pada kondisi basah uap air dan restrukturisasi serta sineresis pati oleh suhu rendah. Gelatinisasi menyebabkan granula pati rusak dan pada saat pendinginan terjadi restrukturisasi pati menjadi pati resisten. Akan tetapi struktur yang terbentuk bukan merupakan struktur granula pati melainkan struktur amilosa teretrogradasi. Amilosa merupakan komponen pati yang berperan dalam pembentukan pati teretrogradasi. Pati tersebut memiliki sifat resisten terhadap enzim pencernaan yang disebut sebagai pati resisten tipe III Tovar et al. 2002; Saguilan et al. 2005; Sajilata et al. 2006. KESIMPULAN Fermentasi spontan pisang didominasi pertumbuhan bakteri asam laktat hingga 10 6 CFUmL. Modifikasi proses melalui fermentasi spontan dan siklus pemanasan bertekanan-pendinginan mempengaruhi karakteristik fisikokimia tepung pisang. Modifikasi secara fermentasi spontan selama 24 jam yang dikombinasi dengan dua siklus pemanasan bertekanan-pendinginan mampu meningkatkan kadar RS tepung pisang hingga empat kali 28.88. Fermentasi spontan dapat meningkatkan kadar amilosa yang selanjutnya akibat proses pemanasan bertekanan-pendinginan akan membentuk amilosa teretrogradasi sebagai RS3. Proses retrogradasi mampu menurunkan kristalinitas tepung pisang dari 18.74-20.08 menjadi 6.98-9.52. Difraksi sinar X menunjukkan granula pati pisang var agung semeru adalah granula tipe C yaitu campuran granula tipe A dengan tipe B. DAFTAR PUSTAKA [AACC] American Association of Cereal Chemists. 2000. Approved Methods of the AACC.The Association, St. Paul, MN. 10 th ed. Abdillah F. 2010. Modifikasi Tepung Pisang Tanduk Musa paradisiaca formatypica melalui Proses Fermentasi Spontan dan Pemanasan Otoklaf 50 untuk Meningkatkan Kadar Pati Resisten. [Tesis] Sekolah Pascasarjana Institut Pertanian Bogor Ambriz SLR, Hernandez JJI, Acevedo EA, Tovar J, Perez LAB. 2008. Characterization of a fibre-rich powder prepared by liquefaction of unripe banana flour. J Food Chem. 107: 1515–1521. AOAC. 1999. Official Methods of Analysis of AOAC International 16th . USA Carrera EC, Cruz AC, Guerrero LC, Ancona DB. 2007. Effect of pyrodextrinization on available starch content of Lima bean Phaseolus lunatus and Cowpea Vigna unguiculata starches. J Food Hydrocolloids. 21: 472–479 Datta R, Henry M. 2006. Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol. 81:1119–29 [Deptan] Departemen Pertanian. 2009. Produktivitas Pisang di Kabupaten Lumajang dalam Laporan Departemen Pertanian Kabupaten Lumajang Tahun 2009. Eggleston G, Swennen R, Akoni S. 1992. Physicochemical studies on starches isolated from plantain cultivarm plantain hybrids and cooking bananas. J Starch . 44: 121-128 Eliasson AC, Gudmunsson M. 1996. Starch: physicochemical and functional properties aspects. In: Carbohy in Food Edited by Eliasson A.C., Marcel Dekker, Inc. New York. p 431-504. Englyst HN, Kingman SM, Cummings JH. 1992 Classification and measurement of nutritionally important starch fraction. Eu J Clin Nutr. 46Suppl.2:533- 550. Farhat IA, Protzmann J, Becker A, Valles-Pamies B, Neale R, Hill SE. 2001. Effect of the extent of conversion and retrogradation on the digestibility of potato starch. J Starch. 53: 431–436. Gong Q, Wang LQ, Tu K. 2006. In situ polymerization of starch with lactic acid in aqueous solution and the microstructure characterization. J Carbohy Polymers . 64: 501–509 Hizukuri S. 1961. X-ray diffractometric studies on starches. Part VI. Crystalline types of amylodextrin and effect of temperature and concentration of mother liquor on crystalline type. J Agric and Biological Chem. 25: 45–49. Jenie BSL, Widowati S, Nurjannah S. 2009. Pengembangan Produk Tepung Pisang Dengan IG Rendah dan Sifat Prebiotik Sebagai Bahan Pangan Fungsional. Laporan Akhir Hibah Kompetitif Penelitian Sesuai Prioritas Nasional Batch II. LPPM, IPB Jenie BSL, Widowati S, Kusumaningrum HD. 2010. Pengembangan Produk Tepung Pisang Dengan IG Rendah dan Sifat Prebiotik Sebagai Bahan 51 Pangan Fungsional. Laporan Akhir Hibah Kompetitif Penelitian Sesuai Prioritas Nasional Batch II. LPPM, IPB Niba LL, Hoffman J. 2003. Resistant starch and β-glucan levels in grain sorghum Sorghum bicolor M. are influenced by soaking and autoclaving. J Food Chem . 81: 113–118 Saguilan AA, Huicochea EF, Tovar JT, Meraza FG, Pérez LAB . 2005. Resistant starch rich-powders prepared by autoclaving of native and lintnerized banana starch: partial characterization. J Starch. 57: 405-412. Santiago MCN, Perez LAB, Tecante A. 2004. Swelling-solubility characteristics, granule size distribution and rheological behavior of banana Musa paradisiaca starch. J Carbohy Polymers. 56: 65–75 Sajilata MG, Rekha SS, Puspha RK. 2006. Resistant starch a review. J Comprehensive Rev in Food Sci and Food Safety . 5: 1-17. Soto RAG, Acevedo EA, Feria JS, Villalobos RR, Perez LAB. 2004. Resistant starch made from banana starch by autoclaving and debranching. J StarchStärke . 56: 495–499. Soto RAG, Escobedo RM, Sanchez HH, Rivera MS, Perez LAB . 2007. The influence of time and storage temperature on resistant starch formation from autoclaved debranched banana starch. J Food Research Int. 40: 304–310. Reddy G, Altaf M, Naveena BJ, Venkateshwar M, Kumar EV. 2008. Amylolytic bacterial lactic acid fermentation — A review. J Elsevier- Biotechnol Adv. 26: 22–34. [RPJMD] Kabupaten Lumajang. 2009. Rencana Pembangunan Jangka Kabupaten Menengah Daerah Kabupaten Lumajang 2010 - 2014. Tovar J, Melito C, Herrera E, Rascon A, Perez E. 2002. Resistant starch formation does not parallel syneresis tendency in different starch gels. J Food Chem 76: 455–459. Tribess TB, Hernandez-Uribe JP, Mendez-Montealvo MGC, Menezes EW, Perez LAB, Tadini CC. 2009. Thermal properties and resistant starch content of green banana flour Musa cavendishii produced at different drying conditions. J Food Sci and Technol. 42:1022-1025. Vishnu C, Naveena BJ, Altaf MD, Venkateshwar M, Reddy G. 2006. Amylopullulanase: a novel enzyme of L. amylophilus GV6 in direct fermentation of starch to L+ lactic acid. J Enzyme Microb Technol. 38:545–50. Waliszewski KN, Aparicio MA, Perez LAB, Monroy JA. 2002. Changes of banana starch by chemical and physical modification. J Carbohy Polimer. 52: 237-242. Elsevier Science Ltd. 52 Wijbenga DJ. 2000. Enzymatic modification of starch granules: peeling off versus porosity. TNO Nutr and Food Research. www.voeding.tno.nl [12 Febr 2009]. Zang P, Whistler RL, Bemiller JN, Hamaker BR. 2005. Banana starch: production, physicochemical properties, and digestibility - a review. J Carbohy Polymers . 59: 443–458. 53

5. IDENTIFIKASI FENOTIP DAN GENOTIP BAKTERI ASAM LAKTAT YANG BERPERAN SELAMA FERMENTASI