4.7. Analisis Pemecahan Masalah
Analisis pemecahan masalah berawal dari perbaikan terhadap rancangan rute yang dilakukan dengan pendekatan metode dynamic programming sehingga
menghasilkan rancangan rute yang terbaik dapat mengurangi biaya operasional.
4.8. Kesimpulan dan Saran
Pengambilan kesimpulan yang berisi hal penting dalam penelitian tersebut dan memberikan saran untuk penelitian selanjutnya bagi peneliti yang ingin
mengembangkan penelitian ini secara lebih fokus.
Universitas Sumatera Utara
BAB V PENGUMPULAN DAN PENGOLAHAN DATA
5.1. Pola Distribusi PT. Panca Pilar Tangguh Medan
Perusahaan PT. Panca Pilar Tangguh Medan yang berlokasi di jalan Helvetia by pass No. 16 Medan melayani permintaan di kota medan. Perusahaan
ini memiliki sebuah pola pendistribusian sebagai berikut:
PT. PANCA PILAR TANGGUH MEDAN
KANTOR Pendistribusian Produk
Konvensional Pengiriman
Gambar 5.1. Pola Distribusi Produk PG PT. Panca Pilar Tangguh Medan
Pola distribusi PT. Panca Pilar Tangguh, merupakan sebuah pola yang dilaksanakan oleh perusahaan sendiri. Yang dimana, perusahaan pusat yang
bergerak dalam dibidang pendistribusian ini berpusat di Surabaya yang memiliki
kantor pusat pendistribusian bagian Medan.
PT. Panca Pilar Tangguh memiliki bagian pendistribusian pada struktur organisasi dan mendistribusikan produk PG pada Outlet-outlet yang tersebar di
kota Medan.
Universitas Sumatera Utara
5.1.1. Data Lokasi Outlet
Berikut ini daftar nama oulet-Outlet PT. Panca Pilar Tangguh Medan yang terdiri dari Supermarket dan Swayalan adalah sebagai berikut dapat dilihat pada
tabel 5.1.
Tabel 5.1. Daftar nama Outlet Pendistribusian PT. Panca Pilar Tangguh No
Nama Pelanggan Alamat
1 Brasragi Supermarket
JL. Gatot Subroto No.288 2
Suzuya Supermarket Marelan
JL. Marelan Raya-Medan 3
Asia King’s Mart JL. Husni Thamrin No.44 RT.000 RW.001
4 Brastagi Supermarket
Cambrigde JL. Letjen S. Parman No.21
5 CV. Pondok Indah pasar
buah JL. Setia Budi No 159
6 Delimas Lestari Kencana
JL. Serdang Baru, Komplek Pertokoan Deli 7
Gelora Plaza JL. Sisingamangaraja No.52-B
8 Irian Tamora
JL. Irian No. 83 C-D 9
Irian Aksara JL. Aksara No.120
10 Irian Tembung
JL. Medan Tembung-Batang Kuis 11
Irian Marelan JL. Raya Marelan No.188
12 Kasimura Supermarket
JL. Gunung Krakatau No. 184203 13
Maju Bersama Glugur JL. Yos Sudarso No. 123
14 Maju Bersama Krakatau
JL. Krakatau No. A 1,2,3 15
Maju Bersama Mangkubumi
JL. Mangkubumi No 3-5 16
Mandiri Supermarket JL. Medan-Binjai KM 12, 5 No. 8
17 Maximart Thamrin
Plaza JL. Thamrin 75 R
18 Maximart
JL. Denai No 245 Tegal Sari Mandala 19
Simpang Griya Swalayan JL. Kapten Muslim Simpang Griya No.8
20 SUN Supermaket
JL. Bridgen Katamso No. 686 21
Swalayan 88 JL. Sunggal No 252 B
22 Smarco
JL. Gagak Hitam No. 28 23
Vigo Lestari Indonesia JL. Kapten Patimura No.165
Universitas Sumatera Utara
5.1.2. Jumlah Pemesanan Setiap Outlet
Setiap Outlet melakukan pemesanan terhadap PT. Panca Pilar Tangguh, dapat dilihat pada tabel 5.2 sebagai berikut:
Tabel 5.2. Daftar Jumlah Pemesanan Setiap Outlet
No Nama Pelanggan
Pemesanan minggu
1 Brasragi Supermarket
2 2
Suzuya Supermarket Marelan 2
3 Asia King’s Mart
1 4
Brastagi Supermarket Cambrigde 2
5 CV. Pondok Indah pasar Buah
1 6
Delimas Lestari Kencana 1
7 Gelora Plaza
1 8
Irian Tamora 1
9 Irian Aksara
2 10 Irian Tembung
2 11 Irian Marelan
2 12 Kasimura Supermarket
2 13 Maju Bersama Glugur
2 14 Maju Bersama Krakatau
2 15 Maju Bersama Mangkubumi
2 16 Mandiri Supermarket
1 17 Maximart Thamrin Plaza
2 18 Maximart
2 19 Simpang Griya Swalayan
1 20 SUN Supermaket
1 21 Swalayan 88
1 22 Smarco
2 23 Vigo Lestari Indonesia
1
Universitas Sumatera Utara
5.1.3. Data Permintaan Produk
Data Permintaan produk PG Protect Gamble pada PT. Panca Pilar Tangguh Medan yang terdiri dari shampo, alat cukur, pampers, cairan pewangi
pakaian dan lain-lainnya dapat dilihat pada tabel 5.3.
Tabel 5.3. Data Permintaan Produk PG
No Nama- nama Outlet
Jumlah Permintaan
unitbulan
Jumlah Pengiriman
unithari Konversi
Jumlah Permintaan m
3
1 Brasragi Supermarket
545 156
5,24 2
Suzuya Supermarket Marelan 520
160 4,22
3 Asia King’s Mart
250 29
2,78 4
Brastagi Supermarket Cambrigde 440
126 4,56
5 CV. Pondok Indah pasar Buah
283 51
3,34 6
Delimas Lestari Kencana 288
48 3,39
7 Gelora Plaza
367 56
3,99 8
Irian Tamora 224
28 3,20
9 Irian Aksara
226 50
3,15 10
Irian Tembung 237
56 2,55
11 Irian Marelan
244 65
2,55 12
Kasimura Supermarket 314
97 3,39
13 Maju Bersama Glugur
324 65
3,48 14
Maju Bersama Krakatau 334
70 3,48
15 Maju Bersama Mangkubumi
326 93
3,39 16
Mandiri Supermarket 278
51 4,73
17 Maximart Thamrin Plaza
388 111
4,31 18
Maximart Hermes Polonia 379
108 4,17
19 Simpang Griya Swalayan
455 70
4,78 20
SUN Supermaket 437
62 4,45
21 Swalayan 88
325 65
3,48 22
Smarco 488
139 4,08
23 Vigo Lestari Indonesia
433 79
4,45
Universitas Sumatera Utara
5.1.4. Hari Kerja Dan Waktu Kerja
Hari kerja dan waktu kerja tim pendistribusi PT. Panca Pilar Tangguh Medan dapat dilihat sebagai berikut pada Tabel 5.4.
Tabel 5.4. Hari Kerja dan Waktu Kerja No
Hari Waktu
Kerja Jam Kerja
menit Istirahat
Waktu Pendistribusian
1 Senin
08.00-17.00 540
60 480
2 Selasa
08.00-17.00 540
60 480
3 Rabu
08.00-17.00 540
60 480
4 Kamis
08.00-17.00 540
60 480
5 Jumat
08.00-17.00 540
90 450
6 Sabtu
08.00-17.00 540
60 480
5.1.5. Sarana Distribusi
Sarana yang digunakan untuk mendistribusi produk PG yaitu mobil L 300 Pick UP FB. Berikut ini spesifikasi dari angkutan yang digunakan dapat dilihat pada
tabel 5.5.
Tabel 5.5. Spesifikasi Kendaraan Angkut No
Tipe Mobil Panjang
m Lebar
m Tinggi
m Volume
m
3
1 L 300 Pick UP FB
4,27 1,80
2,69 20,62
2 L 300 Pick UP FB
4,27 1,80
2,69 20,62
3 L 300 Pick UP FB
4,27 1,80
2,69 20,62
4 L 300 Pick UP FB
4,27 1,80
2,69 20,62
5 L 300 Pick UP FB
4,27 1,80
2,69 20,62
6 L 300 Pick UP FB
4,27 1,80
2,69 20,62
7 L 300 Pick UP FB
4,27 1,80
2,69 20,62
8 L 300 Pick UP FB
4,27 1,80
2,69 20,62
9 L 300 Pick UP FB
4,27 1,80
2,69 20,62
10 L 300 Pick UP FB
4,27 1,80
2,69 20,62
Universitas Sumatera Utara
5.1.6. Jarak Tempuh Menuju Setiap Outlet
Jarak tempuh menuju setiap Outlet dari kantor PT. Panca Pilar Tangguh Medan beralamat di jalan Helvetia by pass No 16 Medan dapat dilihat pada tabel
5.6, dimana perjalanan dilakukan melalui jalan darat dan jarak yang dinyatakan pada penelitian ini dalam satuan Kilometer km.
Tabel 5.6. Jarak Tempuh Menuju Setiap Outlet No
Nama- nama Outlet Jarak km
1 Simpang Griya Swalayan
2,10 2
CV. Pondok Indah pasar Buah 3,00
3 Swalayan 88
5,40 4
Smarco 6,10
5 Brasragi Supermarket
6,40 6
Delimas Lestari Kencana 6,80
7 Maju Bersama Krakatau
7,50 8
Maju Bersama Glugur 7,50
9 Mandiri Supermarket
7,90 10
Brastagi Supermarket Cambrigde 8,20
11 Maju Bersama Mangkubumi
8,40 12
Vigo Lestari Indonesia 8,60
13 Irian Tamora
9,50 14
SUN Supermaket 9,70
15 Maximart Thamrin Plaza
9,80 16
Kasimura Supermarket 10,00
17 Suzuya Supermarket Marelan
10,10 18
Maximart 10,20
19 Irian Aksara
10,70 20
Irian Marelan 12,90
21 Gelora Plaza
13,50 22
Asia King’s Mart 19,50
23 Irian Tembung
21,40
5.1.7. Pembagian Daerah Kerja Pengiriman Produk
Universitas Sumatera Utara
Perusahaan menyusun pembagian untuk mendistribusikan produk ke setiap outlet-outlet, berdasarkan pembagian wilayah kerja maka dapat dilihat pada
tabel 5.7 sebagai berikut :
Tabel 5.7. Laporan Pengiriman Plat
Kendaran Daerah Kerja
8382 CV Irian Tembung, Irian Marelan, Irian Aksara, Irian Tamora
8383 CV Irian Tembung, Irian Marelan, Irian Aksara, Irian Tamora
8384 CV Maju Bersama Mangkubumi, Maju Bersama Glugur, Maju
bersama Krakatau 8385 CV
Maju Bersama Mangkubumi, Maju Bersama Glugur, Maju bersama Krakatau
8386 CV Brastagi Supermarket, Brastagi Supermarket Chambridge,
MaximartThamrin Plaza, Maximart 8387 CV
Brastagi Supermarket, Brastagi Supermarket Chambridge, MaximartThamrin Plaza, Maximart
8388 CV Kasimura
Supermarket, Mandiri Supermarket, Suzuya
Supermarket Marelan, Smarco 8389 CV
Kasimura Supermarket, Mandiri Supermarket, Suzuya
Supermarket Marelan, Smarco 8390 CV
Swalayan 88, SUN Supermarket, Asia King’s Mart, CV. Pondok Indah Pasar Buah
8391 CV Simpang Griya Swalayan, Vigo Lestari Indonesia, Delimas
Lestari Kencana, Gelora Plaza
5.2. Pengolahan Data
Universitas Sumatera Utara
5.2.1. Penentuan Rute Terpendek
Penentuan rute terpendek dilakukan melalui rute distribusi yang tersedia yakni rute distribusi dari kantor medan Helvetia mengelilingi semua outlet lalu
kembali ke kantor medan Helvetia. Dari graph permasalahan yang diberikan, penentuan rute terpendek
menurut travelling salesman problem dimana kendaraan angkut mengelilingi semua site dan kembali lagi ke depot dalam sekali jalan.
Perhitungan jarak secara keseluruhan dapat dihitung dengan cara menjumlahkan seluruh jarak dari kantor medan Helvetia menuju semua outlet
dan kembali ke kantor medan Helvetia yakni: Jarak dari kantor medan Helvetia - Simpang Griya Swalayan - CV. Pondok
Indah pasar Buah - Swalayan 88 – Smarco - Brastagi Supermarket -Kasimura Supermarket - Maju Bersama Krakatau - Mandiri Supermarket - Brastagi
Supermarket Cambrigde - Maju Bersama Mangkubumi - Vigo Lestari Indonesia - Irian Tamora - SUN Supermarket - Maximart Thamrin Plaza - Suzuya
Supermarket Marelan - Maximart Hermes Polonia - Irian Aksara - Maju Bersama Glugur - Gelora Swalayan - Irian Marelan - Gelora Plaza - Asia King’s
Mart - Irian Tembung - Delimas Lestari Kencana – kantor pusat medan helvetia dengan total jaraknya yaitu : 242,2 km. Berikut ini tabel jarak antara setiap outlet
PT Panca Pilar Tangguh dapat dilihat pada tabel 5.8 yakni:
Universitas Sumatera Utara
Tabel 5.8. Jarak Antara Setiap Outlet rute
No Nama- nama Outlet
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23
1 Griya Swalayan
X 1,70
6,80 7,40
4,60 8,40
6,10 2,90
6,50 6,80
6,40 31,00
7,70 7,70
9,20 8,00
8,60 4,80
11,60 11,40
7,70 15,00
12,50
2 CV. Pondok Indah
X 3,10
2,70 3,50
7,50 5,60
1,50 5,50
5,80 6,90
23,90 6,60
6,90 8,80
7,80 7,60
9,60 11,00
6,30 21,80
20,60 10,00
3 Swalayan 88
X 0,85
4,60 9,90
13,00 5,70
6,00 7,40
5,00 23,70
8,80 9,10
15,30 6,20
11,60 16,10
17,60 9,30
17,20 27,10
10,90
4 Smarco
X 4,50
10,00 11,30
5,40 4,90
7,60 5,30
25,60 8,70
9,30 14,30
6,30 11,20
9,00 13,70
11,10 17,00
26,20 11,60
5 Brasragi Supermarket
X 6,70
8,60 7,60
2,20 4,30
3,00 20,70
5,70 6,00
12,70 3,90
7,70 5,00
14,30 8,40
19,00 12,30
6,40
6 Kasimura Supermarket
X 14,00
8,60 4,20
5,00 5,50
18,00 2,60
1,00 13,50
4,70 2,10
5,60 15,80
2,60 25,40
8,30 3,60
7 Maju Krakatau
X 15,50
8,80 7,80
10,20 23,50
8,30 7,10
8,80 10,60
8,30 7,20
9,80 11,60
27,10 14,90
8,10
8 Mandiri Supermarket
X 9,60
11,60 10,20
29,50 12,90
13,30 16,30
11,10 14,90
11,60 18,70
15,70 11,50
20,00 15,50
9 Brastagi Cambrigde
X 1,60
1,70 19,60
2,80 3,10
12,30 3,20
5,80 4,30
14,80 7,30
21,00 12,00
7,80
10 Maju Mangkubumi
X 3,40
17,30 1,50
1,90 12,60
3,00 4,30
5,90 15,00
0,90 22,70
11,00 6,20
11 Vigo Lestari Indonesia
X 18,30
3,80 4,90
13,70 0,90
7,80 6,10
16,40 7,10
22,00 22,10
9,20
12 Irian Tamora
X 15,70
17,20 30,40
17,50 16,00
20,50 30,70
18,80 41,00
15,00 17,00
13 SUN Supermaket
X 2,00
12,90 2,90
4,80 4,90
15,20 0,55
24,00 11,00
6,30
14 Maximart Thamrin
X 13,10
3,90 3,10
5,20 15,40
4,70 24,60
9,30 4,70
15 Suzuya Marelan
X 14,50
14,60 10,20
0,45 16,30
27,50 20,00
14,50
16 Maximart
X 7,30
6,30 16,60
3,60 22,80
14,00 8,80
17 Irian Aksara
X 5,70
17,20 6,30
27,40 6,70
2,00
18 Maju Glugur
X 10,30
9,70 24,40
5,70 7,40
19 Irian Marelan
X 18,80
29,70 16,00
17,00
20 Gelora Plaza
X 28,90
6,30 8,30
21 Asia King’s Mart
X 26,00
27,10
22 Irian Tembung
X 17,00
23 Delimas Kencana
X
Universitas Sumatera Utara
5.2.2. Penentuan Waktu Siklus Horizon Perencanaan
Perhitungan waktu siklus untuk graph awal menggunakan teori dari algoritma yang telah dijabarkan yaitu horizon perencanaan sama dengan daya
tahan kecil. Data permintaan produk adalah berdasarkan permintaan perminggu maka
dapat ditentukan waktu siklus atau horizon perencaan adalah 6 hari. Total volume demand selama waktu siklus yakini:
Total volume demand = Σ total demand seluruh outlet Total volume demand dapat dihitung dari penjumlahan dari total demand
outlet Simpang Griya Swalayan + CV. Pondok Indah pasar Buah + Swalayan 88 + Smarco + Brastagi Supermarket + Kasimura Supermarket + Maju Bersama
Krakatau + Mandiri Supermarket + Brastagi Supermarket Cambrigde +. . . . . . + Delimas Lestari Kencana yaitu : 12870 unit produk yang dapat dikonversikan
volume permintaan : 135,73 m
3
.
5.2.3. Penentuan Demand Tiap Sub Rute
Setelah subrute terpilih, kemudian dilakukan pengecekan kapasitas kendaraan yang memenuhi order dari outlet-outlet pada subrute tersebut, apabila
tidak mencukupi maka kembali ke langkah pertama. Kendaraan angkut yang digunakan adalah L 300 Pick UP FB box dengan kapasitas 20, 62 m
3
yang merupakan batas maksimum kapasitas kendaraan angkut milik PT. Panca Pilar
Tangguh Medan untuk pendistribusian produk PG sehingga jumlah permintaan
Universitas Sumatera Utara
order setiap subrute ≤ 20,62 m
3
. Apabila kapasitas kendaran angkut mencukupi order outlet terpilih selanjutnya ke langkah berikutnya.
Penentuan subrute pendistribusian produk dilakukan dengan mempertimbangkan kapasitas alat angkut dan jarak yang ditempuh yang optimum,
pemilihan outlet-outlet sehingga terbentuk sebuah rute didasarkan keterkaitan jarak outlet yang terdekat antara satu sama lainnya. Maka dapat diperoleh
kumpulan rute akan dilaksanakan pendistribusian produk sebagai berikut:
- Sub Rute 1
Outlet yag terpilih: Kantor Pusat Helvetia – Griya Swalayan - Swalayan 88 - Vigo Lestari Indonusa – SUN Supermarket
Jumlah Order : 4,78 + 3,48 + 4,45 + 4,45 = 17,16 m
3
≤ 20,62 m
3
- Sub Rute 2
Outlet yag terpilih: Kantor Pusat Helvetia – Brastagi Supermarket – Brastagi Supermarket Cambrigde – Maximart Hermes Polonia – Maju Bersama Mangkubumi
– Irian Aksara Jumlah Order : 5,24+4,56+ 4,17+ 3,39+3,15 = 20,51 m
3
≤ 20,62 m
3
- Sub Rute 3
Outlet yag terpilih: Kantor Pusat Helvetia-Krakatau-Maju Bersama Glugur- Maximart Thamrin - Kasimura Supermarket- Irian Tembung- Irian Marelan
Jumlah Order : 3,48+3,48+4,31+3,39+2,55+3,15 = 20,36 m
3
≤ 20,62 m
3
- Sub Rute 4
Outlet yag terpilih: Kantor Pusat Helvetia – Smarco - Gelora Plaza - Suzuya Supermarket – Delimas Lestari Kencana
Jumlah Order : 4,22+3,39+3,99+4,08 = 15,67 m
3
≤ 20,62 m
3
Universitas Sumatera Utara
- Sub Rute 5
Outlet yag terpilih: Kantor Pusat Helvetia – CV. Pondok indah pasar buah - Suzuya Supermarket – Asia Kings Mart – Irian Tamora
Jumlah Order : 3,20+4,22+2,78+3,34 = 13,54 m
3
≤ 20,62 m
3
- Sub Rute 6
Outlet yag terpilih: Kantor Pusat Helvetia – Brastagi Supermarket – Brastagi Supermarket Cambrigde – Maximart Hermes Polonia – Maju Bersama
Mangkubumi – Irian Aksara Jumlah Order : 5,24+4,56+ 4,17+ 3,39+3,15 = 20,51 m
3
≤ 20,62 m
3
- Sub Rute 7
Outlet yag terpilih: Kantor Pusat Helvetia-Krakatau-Maju Bersama Glugur- Maximart Thamrin - Kasimura Supermarket- Irian Tembung- Irian Marelan
Jumlah Order : 3,48+3,48+4,31+3,39+2,55+3,15 = 20,36 m
3
≤ 20,62 m
3
- Sub Rute 8
Outlet yag terpilih: Kantor Pusat Helvetia – Mandiri Supermarket - Smarco Jumlah Order : 5,01+3,01 = 8,02 m
3
≤ 20,62 m
3
5.3. Perhitungan Rute dengan menggunakan Metode Dynamic
Programming 5.3.1. Penyelesaian Sub Rute 1
Sub Rute 1, outlet yag terpilih: Kantor Pusat Helvetia – Griya Swalayan - Swalayan 88 - Vigo Lestari Indonusa – SUN Supermarket Dengan jumlah Order : 4,78 +
Universitas Sumatera Utara
3,48 + 4,45 + 4,45 = 17,16 m
3
≤ 20,62 m
3
. Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 1, dapat dilihat pada gambar 5.2.
Rute I 4,7
3 4,7
4,6 6
5,28 4,46
4,34 3,24
4,44 3,16
2,62 2,9
4,8 4,2
Stage 1 Stage 2
Stage 3 Stage 4
SUN Swalayan 88
Griya Swalayan Vigo Lestari
Indonusa 1
B A
C
D E
F
G H
Gambar 5.2. Rute Pendistribusian Sub Rute 1
Dalam diagram ini terlihat bahwa, salesman dapat berangkat dari titik awal 1 melalui jalan A atau jalan B yang masing-masing digambarkan sebagai blok A
dan blok B. A
B C
D E
F G
H 1
2,62 2,90
A 4,70
4,80 C
4,70 4,60 6,00 E 3,24
B 4,20
3,00 D
4,34 4,46 5,28 F 3,16
G 4,44
Untuk lebih jelasnya, maka langkah awal lebih baik problema stage coach tersebut diselesaikan lebih dahulu dengan menggunakan metode dynamic
programming, berikut ini dapat dilihat pada gambar 5.3. penyelesaian problema stage coach.
Universitas Sumatera Utara
Stage 1 Stage 2
Stage 3 Stage 4
S
1
g
1
x
1
x
2
g
2
x
3
g
3
x
4
g
4
S
3
S
2
S
4
S
5
3-Stage 2-Stage
1-Stage
4-Stage
Gambar 5.3. Penyelesaian problema stage coach
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah x1
→x2→x3→x4 x4 dengan kantor pusat sebagai x1 = 1 dan Sun Supermarket x4 = H. Kemudian
pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan memilih Xn
sebagai outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian : Pada tahap akhir n=4, maka perjalannya hanya ditentukan sepenuhnya
oleh kondisi s sekarang yaitu F, G dan H dan tujuan akhir I, sehingga : �
4 ∗
S = �
4
S,J = CsI Pada tahap akhir n = 4 ini hasilnya ditabelkan sebagai berikut: Tahap 4
Universitas Sumatera Utara
Tabel 5.9. Tahap 4 Perjalanan Sub Rute 1 S
�
� ∗
S �
� ∗
F 3,24
I G
3,16 I
H 4,44
I Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di F, G
maupun di H maka solusi feasiblenya adalah �
4 ∗
= I Pada Tahap n = 3, maka perjalanannya perlu melakukan beberapa
hitungan. Pada tahap n = 3 hasil ditabelkan dapat diblihat sebagai berikut:
Tabel 5.10. Tahap 3 Perjalanan Sub rute 1
S �
�
S = CsI +
�
�
�
� ∗
S �
� ∗
F G
H D
7,94 7,76 10,44 7,76
F E
7,58 7,62 9,72 7,58
F
Tabel 5.11. Tahap 2 Perjalanan Sub rute 1 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
D E
B 12,64
12,38 12,38 E
C 11,96
12,72 11,96 D
Tabel 5.12. Tahap 1 Perjalanan Sub rute 1 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
A 15
14,86 14,86
C
Dari hasil diatas nilai optimum telah tercapai yaitu 14,86, dengan rute : Rute 1 :A
→C→D→G→I = 2,9+ 4,2+4,6+3,16 = 14,86 km
Universitas Sumatera Utara
Rute tersebut dapat digambar sebagai berikut:
Rute I 4,7
3 4,7
4,6 6
5,28 4,46
4,34 3,24
4,44 3,16
2,62 2,9
4,8 4,2
Stage 1 Stage 2
Stage 3 Stage 4
SUN Swalayan 88
Griya Swalayan Vigo Lestari
Indonusa 1
B A
C
D E
F
G H
Gambar 5.4. Rute Perjalanan Optimal Sub Rute 1
5.3.2.Penyelesaian Sub Rute 2 Sub Rute 2 outlet yag terpilih: Kantor Pusat Helvetia – Brastagi
Supermarket – Brastagi Supermarket Cambrigde – Maximart Hermes Polonia - Maju Bersama Mangkubumi – Irian Aksara. Dengan jumlah Order :
5,24+4,56+4,17+3,39+3,15 = 20,51 m
3
≤ 20,62 m
3
. Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 2, dapat dilihat pada
gambar 5.4.
Universitas Sumatera Utara
Rute II B
D E
G 4,6
3,7 H
3,4
2,6 A
1 5,8
6,7 C
5,6 2,84
2,76 2,78
F 3,2
I 2,56
2,56 3,68
2,8 5,4
4,8
Supermarket Brastagi
Brastagi chambrigde
Maximart Hermes
Maju Bersama Mangkubumi
Irian Aksara Stage 1
Stage 2 Stage 3
Stage 4 Stage 5
J
Gambar 5.5. Rute Pendistribusian Sub Rute 2
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4,5 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah
x1 →x2→x3→x4→x5 dengan kantor pusat sebagai x1 = A dan Irian Aksara x5 =
K. Kemudian pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan
memilih Xn sebagai outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian : Pada tahap akhir n=4, maka perjalannya hanya ditentukan sepenuhnya
oleh kondisi s sekarang yaitu I dan J dan tujuan akhir K, sehingga : �
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 4 ini hasilnya ditabelkan sebagai berikut:
Universitas Sumatera Utara
Tahap 4
Tabel 5.13. Tahap 5 Perjalanan Sub Rute 2 S
�
� ∗
S �
� ∗
I 5,40
K J
4,80 J,K
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K Pada Tahap n = 3, maka perjalanannya perlu melakukan beberapa hitungan. Pada
tahap n = 3 hasil ditabelkan dapat diblihat sebagai berikut:
Tabel 5.14. Tahap 4 Perjalanan Sub rute 2 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
I J
F 8,80 8,48
8,48 J
G 7,96 7,60
7,60 J
H 7,96 7,40
7,40 H,J
Tabel 5.15. Tahap 3 Perjalanan Sub rute 2 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
F G
H E 12,18 10,80 12,00 10,80 E,G
Tabel 5.16. Tahap 2 Perjalanan Sub rute 2 S
�
�
S = CsI +
�
�
�
� ∗
B 13,64
B C
13,56 C
D 13,58
D
Universitas Sumatera Utara
Tabel 5.17. Tahap 1 Perjalanan Sub rute 2 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
D A 19,16 19,16 20,26 19,16 B,C
Dari hasil diatas nilai optimum telah tercapai yaitu 18,96, dengan rute : Rute 2 :A
→B→E→G→J→K =5,6+2,76+3,2+2,6+4,8 = 18,96 km Rute tersebut dapat digambar sebagai berikut:
Rute II
B D
E
G 4,6
3,7 H
3,4
2,6 A
1 5,8
6,7 C
5,6 2,84
2,76 2,78
F 3,2
I 2,56
2,56 3,68
2,8 J
5,4
4,8 Supermarket
Brastagi Brastagi
chambrigde Maximart
Hermes Maju Bersama
Mangkubumi Irian Aksara
Stage 1 Stage 2
Stage 3 Stage 4
Stage 5
Gambar 5.6. Rute Perjalanan Optimal sub Rute 2
5.2.4.3.Penyelesaian Sub Rute 3 Sub Rute 3 outlet yag terpilih : Kantor Pusat Helvetia-Krakatau-Maju
Bersama Glugur-Maximart Thamrin - Kasimura Supermarket- Irian Tembung- Irian Marelan. Dengan jumlah Order : 3,48+3,48+4,31+3,39+2,55+3,15 =
20,36 m
3
≤ 20,62 m
3
. Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 3, dapat dilihat pada gambar 5.6.
Universitas Sumatera Utara
Rute III C
E 17,52
15,75 G
1,0
1,1 1
8,3 A
8,7 F
19,56 H
1,1 I
8,3 8,3
Irian Tembung Irian marelan
Kasimura supermarket
Maju bersama glugur
Krakatau Maximart Thamrin
D 10,89
J 8,5
K 24
26 18,75
Stage 1 Stage 2
Stage 3 Stage 4
Stage 5 Stage 6
B 9,1
9,36 9,12
Gambar 5.7. Rute Pendistribusian Sub Rute 3
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4,5,6 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah
x1 →x2→x3→x4→x5 dengan kantor pusat sebagai x1 = A dan Irian marelan x6
= L. Kemudian pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan
memilih Xn sebagai outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian : Pada tahap akhir n=6, maka perjalannya hanya ditentukan sepenuhnya
oleh kondisi s sekarang yaitu J dan K dan tujuan akhir L, sehingga : �
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 6 ini hasilnya ditabelkan sebagai berikut: Tahap 6
Universitas Sumatera Utara
Tabel 5.18. Tahap 6 Perjalanan Sub Rute 3 S
�
6 ∗
S �
6 ∗
J 24,00
J K
26,00 K
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K. Pada Tahap n = 3, maka perjalanannya perlu melakukan beberapa hitungan. Pada tahap n = 3 hasil ditabelkan dapat
diblihat sebagai berikut:
Tabel 5.19. Tahap 5 Perjalanan Sub rute 3 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
J K
H 32,30 34,30
32,30 H I
32,50 -
32,50 I
Tabel 5.20. Tahap 4 Perjalanan Sub rute 3 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
H I
F 33,30 33,60
33,30 F G -
33,40 33,40 G
Tabel 5.21. Tahap 3 Perjalanan Sub rute 3 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
F G
D 49,05 50,92
49,05 D,F E 52,05
53,16 52,05 E,F
Universitas Sumatera Utara
Tabel 5.22. Tahap 2 Perjalanan Sub rute 3 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
D E
B 59,94
60,75 59,94 B,D
C 58,17
61,41 58,17 C,D
Tabel 5.23. Tahap 1 Perjalanan Sub rute 3 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
A 68,24 67,27
67,27 A,C Dari hasil diatas nilai optimum telah tercapai yaitu 67,27 km, dengan rute :
Rute 3 :1 →B→C→E→G→I→K = 9,1+ 9,12+15,75+1+8,3+24 = 67,27 km
Rute tersebut dapat digambar sebagai berikut:
C E
17,52 15,75
G 1,0
1,1 8,3
A 8,7
F 19,56
H 1,1
I 8,3
8,3 D
10,89
J 8,5
24 26
18,75 B
9,1 9,36
9,12
Irian Tembung Irian marelan
Kasimura supermarket
Maju bersama glugur
Krakatau Maximart Thamrin
Stage 1 Stage 2
Stage 3 Stage 4
Stage 5 Stage 6
K 1
Rute III
Gambar 5.8. Rute Perjalanan Optimal sub Rute 3
5.2.4.4.Penyelesaian Sub Rute 4
Sub Rute 4, outlet yag terpilih: Kantor Pusat Helvetia – Smarco - Gelora Plaza - Suzuya Supermarket – Delimas Lestari Kencana. Dengan jumlah order :
Universitas Sumatera Utara
4,22+3,39+3,99+5,01 = 16,60 m
3
≤ 20,62 m
3.
Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 4, dapat dilihat pada gambar
5.8.
Rute IV
B C
13
15 26
D E
F 17
24 G
44
37 A
1 2,62
2,9 13,1
Stage 1 Stage 2
Stage 3 Stage 4
Gelora Plaza Suzuya Marelan
Smarco Delimas Kencana
Gambar 5.9. Rute Pendistribusian Sub Rute 4
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah x1
→x2→x3→x4 dengan kantor pusat sebagai x1 = A dan Suzuya marelan x4 = H. Kemudian pilih
fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan memilih Xn sebagai
outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Universitas Sumatera Utara
Prosedur penyelesaian : Pada tahap akhir n=4, maka perjalannya hanya ditentukan sepenuhnya
oleh kondisi s sekarang yaitu J dan K dan tujuan akhir L, sehingga : �
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 4 ini hasilnya ditabelkan sebagai berikut: Tahap 4
Tabel 5.24. Tahap 4 Perjalanan Sub Rute 4 S
�
4 ∗
S �
4 ∗
F 44,00
F G
37,00 G
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K. Pada Tahap n = 3, maka perjalanannya perlu melakukan beberapa hitungan. Pada tahap n = 3 hasil ditabelkan dapat
diblihat sebagai berikut:
Tabel 5.25. Tahap 3 Perjalanan Sub rute 4 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
J K
D 70,00 54,00
54,00 D,G E 68,00
- 68,00 E
Tabel 5.26. Tahap 2 Perjalanan Sub rute 4 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
H I
B 67,00 81,10
67,00 B,D C 83,00
- 83,00 C
Tabel 5.27. Tahap 1 Perjalanan Sub rute 4 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
Universitas Sumatera Utara
A 69,62 85,9
69,62 A,B
Dari hasil diatas nilai optimum telah tercapai yaitu 69,62 km, dengan rute : Rute 4 :A
→B→D→G→H = 2,62 + 13 + 17 + 37 = 69,62 km Rute tersebut dapat digambar sebagai berikut:
Rute IV
B C
13
15 26
D E
F 17
24 G
44
37 A
1 2,62
2,9 13,1
Gelora Plaza Suzuya Marelan
Smarco Delimas Kencana
Stage 1 Stage 2
Stage 3 Stage 4
Gambar 5.10. Rute Perjalanan Optimal sub Rute 4
5.2.4.5.Penyelesaian Sub Rute 5
Sub Rute 5, outlet yag terpilih : Kantor Pusat Helvetia – Suzuya Supermarket – Delimas Lestari Kencana – Gelora Plaza – Smarco. Dengan
jumlah order : 4,22+3,39+3,99+5,01 = 16,60 m
3
≤ 20,62 m
3.
Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 5, dapat dilihat pada
gambar 5.11.
Universitas Sumatera Utara
Rute V C
E 15,44
13,22 32,02
D F
28,11
27,1
G 30,2
34,15 A
1
6,9 16,48
12,2
Stage 1 Stage 2
Stage 3 Stage 4
Irian Tajung Morawa
Suzuya Marelan CV. Pondok Indah
Pasar Buah Asia King’s Mart
B
7,3
Gambar 5.11. Rute Pendistribusian Sub Rute 5
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah x1
→x2→x3→x4 dengan kantor pusat sebagai x1 = A dan Irian tanjung morawa x4= H. Kemudian
pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan memilih Xn
sebagai outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian :
Universitas Sumatera Utara
Pada tahap akhir n = 4, maka perjalannya hanya ditentukan sepenuhnya oleh kondisi s sekarang yaitu J dan K dan tujuan akhir L, sehingga :
�
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 4 ini hasilnya ditabelkan sebagai berikut:Tahap 4
Tabel 5.28. Tahap 4 Perjalanan Sub Rute 5 S
�
4 ∗
S �
4 ∗
F 30,20
F G
34,15 G
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K. Pada Tahap n = 3, maka perjalanannya perlu melakukan beberapa hitungan. Pada tahap n = 3 hasil ditabelkan dapat
diblihat sebagai berikut:
Tabel 5.29. Tahap 3 Perjalanan Sub rute 5 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
F G
D 62,22 61,25
61,25 D,G E 62,26
- 62,26 E,F
Tabel 5.30. Tahap 2 Perjalanan Sub rute 5 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
D E
B 76,69 78,74
76,69 B,D C 74,46
75,48 74,48 C,D
Tabel 5.31. Tahap 1 Perjalanan Sub rute 5 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
Universitas Sumatera Utara
A 83,59 81,76
81,76 A,C
Dari hasil diatas nilai optimum telah tercapai yaitu 81,76 km, dengan rute : Rute 5 :A
→C→D→G→H = 7,3+12,2+27,1+34,15= 81,76 km Rute tersebut dapat digambar sebagai berikut:
Rute V C
E
15,44
13,22
32,02
D F
28,11 27,1
G
30,2
34,15
A
1
6,9 16,48
12,2
Irian Tajung Morawa
Suzuya Marelan CV. Pondok Indah
Pasar Buah Asia King’s Mart
B
7,3
Stage 1 Stage 2
Stage 3 Stage 4
Gambar 5.12. Rute Perjalanan Optimal sub Rute 5
5.2.4.6.Penyelesaian Sub Rute 6 Sub Rute 6 outlet yag terpilih: Kantor Pusat Helvetia – Brastagi
Supermarket – Brastagi Supermarket Cambrigde – Maximart Hermes Polonia - Maju Bersama Mangkubumi – Irian Aksara. Dengan jumlah Order :
5,24+4,56+4,17+3,39+3,15 = 20,51 m
3
≤ 20,62 m
3
. Maka diperoleh rute
Universitas Sumatera Utara
perjalanan menuju outlet yang digabungkan menjadi sub rute 6, dapat dilihat pada gambar 5.12.
Rute VI B
D E
G 4,6
3,7 H
3,4
2,6 A
1 5,8
6,7 C
5,6 2,84
2,76 2,78
F 3,2
I 2,56
2,56 3,68
2,8 5,4
4,8
Supermarket Brastagi
Brastagi chambrigde
Maximart Hermes
Maju Bersama Mangkubumi
Irian Aksara Stage 1
Stage 2 Stage 3
Stage 4 Stage 5
J
Gambar 5.13. Rute Pendistribusian Sub Rute 6
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4,5 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah
x1 →x2→x3→x4→x5 dengan kantor pusat sebagai x1 = A dan Irian Aksara x5 =
K. Kemudian pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan
memilih Xn sebagai outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian :
Universitas Sumatera Utara
Pada tahap akhir n=5, maka perjalannya hanya ditentukan sepenuhnya oleh kondisi s sekarang yaitu I dan J dan tujuan akhir K, sehingga :
�
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 5, ini hasilnya ditabelkan sebagai berikut: Tahap 5
Tabel 5.32. Tahap 5 Perjalanan Sub Rute 6 S
�
� ∗
S �
� ∗
I 5,40
K J
4,80 J,K
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K. Pada Tahap n = 4, maka perjalanannya perlu melakukan beberapa hitungan. Pada tahap n = 4 hasil ditabelkan dapat
diblihat sebagai berikut:
Tabel 5.33. Tahap 4 Perjalanan Sub rute 6 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
I J
F 8,80 8,48
8,48 J
G 7,96 7,60
7,60 J
H 7,96 7,40
7,40 H,J
Tabel 5.34. Tahap 3 Perjalanan Sub rute 6 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
F G
H E 12,18 10,80 12,00 10,80 E,G
Tabel 5.35. Tahap 2 Perjalanan Sub rute 6 S
�
�
S = CsI +
�
�
�
� ∗
Universitas Sumatera Utara
B 13,64
B C
13,56 C
D 13,58
D
Tabel 5.36. Tahap 1 Perjalanan Sub rute 6 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
D A 19,16 19,16 20,26 19,16 B,C
Dari hasil diatas nilai optimum telah tercapai yaitu 18,96, dengan rute : Rute 6 :A
→B→E→G→J→K =5,6+2,76+3,2+2,6+4,8 = 18,96 km Rute tersebut dapat digambar sebagai berikut:
B D
E
G 4,6
3,7 H
3,4
2,6 A
1 5,8
6,7 C
5,6 2,84
2,76 2,78
F 3,2
I 2,56
2,56 3,68
2,8 J
5,4
4,8
Supermarket Brastagi
Brastagi chambrigde
Maximart Hermes
Maju Bersama Mangkubumi
Irian Aksara Stage 1
Stage 2 Stage 3
Stage 4 Stage 5
Rute VI
Gambar 5.14. Rute Perjalanan Optimal sub Rute 6
5.2.4.7.Penyelesaian Sub Rute 7 Sub Rute 7 outlet yag terpilih : Kantor Pusat Helvetia-Krakatau-Maju
Bersama Glugur-Maximart Thamrin - Kasimura Supermarket- Irian Tembung- Irian Marelan. Dengan jumlah Order : 3,48+3,48+4,31+3,39+2,55+3,15 =
Universitas Sumatera Utara
20,36 m
3
≤ 20,62 m
3
. Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 7, dapat dilihat pada gambar 5.14.
Rute VII C
E 17,52
15,75 G
1,0
1,1 1
8,3 A
8,7 F
19,56 H
1,1 I
8,3 8,3
Irian Tembung Irian marelan
Kasimura supermarket
Maju bersama glugur
Krakatau Maximart Thamrin
D 10,89
J 8,5
K 24
26 18,75
Stage 1 Stage 2
Stage 3 Stage 4
Stage 5 Stage 6
B 9,1
9,36 9,12
Gambar 5.15. Rute Pendistribusian Sub Rute 7
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3,4,5,6 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah
x1 →x2→x3→x4→x5→x6 dengan kantor pusat sebagai x1 = A dan Irian marelan
x6 = L. Kemudian pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan
memilih Xn sebagai outlet tujuan berikutnya. Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang
nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian : Pada tahap akhir n=6, maka perjalannya hanya ditentukan sepenuhnya
oleh kondisi s sekarang yaitu J dan K dan tujuan akhir L, sehingga :
Universitas Sumatera Utara
�
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 6 ini hasilnya ditabelkan sebagai berikut: Tahap 6
Tabel 5.37. Tahap 6 Perjalanan Sub Rute 7 S
�
6 ∗
S �
6 ∗
J 24,00
J K
26,00 K
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K. Pada Tahap n = 3, maka perjalanannya perlu melakukan beberapa hitungan. Pada tahap n = 3 hasil ditabelkan dapat
diblihat sebagai berikut:
Tabel 5.38. Tahap 5 Perjalanan Sub rute 7 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
J K
H 32,30 34,30
32,30 H I
32,50 -
32,50 I
Tabel 5.39. Tahap 4 Perjalanan Sub rute 7 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
H I
F 33,30 33,60
33,30 F G -
33,40 33,40 G
Tabel 5.40. Tahap 3 Perjalanan Sub rute 7 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
F G
D 49,05 50,92
49,05 D,F E 52,05
53,16 52,05 E,F
Universitas Sumatera Utara
Tabel 5.41. Tahap 2 Perjalanan Sub rute 7 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
D E
B 59,94
60,75 59,94 B,D
C 58,17
61,41 58,17 C,D
Tabel 5.42. Tahap 1 Perjalanan Sub rute 7 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
B C
A 68,24 67,27
67,27 A,C Dari hasil diatas nilai optimum telah tercapai yaitu 67,27 km, dengan rute :
Rute 7 :A →C→D→F→H→J→L = 9,1+ 9,12+15,75+1+8,3+24 = 67,27 km
Rute tersebut dapat digambar sebagai berikut:
C E
17,52 15,75
G 1,0
1,1 8,3
A 8,7
F 19,56
H 1,1
I 8,3
8,3 D
10,89
J 8,5
24 26
18,75 B
9,1 9,36
9,12
Irian Tembung Irian marelan
Kasimura supermarket
Maju bersama glugur
Krakatau Maximart Thamrin
Stage 1 Stage 2
Stage 3 Stage 4
Stage 5 Stage 6
K 1
Rute VII
Gambar 5.16. Rute Perjalanan Optimal sub Rute 7
Universitas Sumatera Utara
5.2.4.8.Penyelesaian Sub Rute 8 Sub Rute 8 outlet yag terpilih : Kantor Pusat Helvetia Smarco-Mandiri
Supermarket. Dengan jumlah Order : 4,73+4,08 = 8,81 m
3
≤ 20,62 m
3
. Maka diperoleh rute perjalanan menuju outlet yang digabungkan menjadi sub rute 8,
dapat dilihat pada gambar 5.17.
Rute VIII B
C 4,7
3 D
E 3,24
4,44 A
1 2,62
2,9 4,8
4,2 Stage 1
Stage 2
Smarco Mandiri
Supermarket Stage 3
Gambar 5.17. Rute Pendistribusian Sub Rute 8
Formulasi 1 : Pilih variabel keputusan Xn n = 1,2,3 sebagai kota yang harus ditempuh pada tahap n, Sehingga rute seluruhnya adalah x1
→x2→x3 dengan kantor pusat sebagai x1 = A dan mandiri Supermarket x3 = F. Kemudian
pilih fnS,Xn sebagai biaya total untuk kebijakan keseluruhan dari tahapan selanjutnya sampai pada kondisi s, siap berangkat ke tahap n, dengan memilih Xn
sebagai outlet tujuan berikutnya.
Universitas Sumatera Utara
Formulasi 2 : Pada kondisi s dan tahap n, gunakan Xn sebagai sembarang nilai yang meminimumkan f
n
s, X
n
, gunakan �
� ∗
s,X
n
. Dengan f
n
s,X
n
= biaya sekarang tahap n + minimum biaya tahap n+1 dan selanjutnya
Diformulasikan sebagai : �
�
S,X
n
= C
s
X
n
+ f
n+1
X
n
Prosedur penyelesaian : Pada tahap akhir n=3, maka perjalannya hanya ditentukan sepenuhnya
oleh kondisi s sekarang yaitu J dan K dan tujuan akhir L, sehingga : �
4 ∗
S = �
4
S,J = CsK Pada tahap akhir n = 3 ini hasilnya ditabelkan sebagai berikut:Tahap 3
Tabel 5.43. Tahap 3 Perjalanan Sub Rute 8 S
�
3 ∗
S �
3 ∗
J 3,24
J K
4,44 K
Dari tabel diatas dapat dilihat tim pendistribusi sudah sampai di I dan J maka solusi feasiblenya adalah
�
4 ∗
= K. Pada Tahap n = 2, maka perjalanannya perlu melakukan beberapa hitungan. Pada tahap n = 2 hasil ditabelkan dapat
diblihat sebagai berikut:
Tabel 5.44. Tahap 2 Perjalanan Sub rute 8 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
J K
B 7,94 9,24
7,94 B,D
C 7,44 7,44
7,44 C,D,E
Tabel 5.45. Tahap 1 Perjalanan Sub rute 8 S
�
�
S = CsI +
�
�
�
� ∗
S �
� ∗
H I
Universitas Sumatera Utara
A 10,62 10,34
10,34 A,C
Dari hasil diatas nilai optimum telah tercapai yaitu 10,34 km, dengan rute : Rute 8 :A
→C→D→F = 2,9+4,2+3,24 = 10,34 km Rute tersebut dapat digambar sebagai berikut:
Rute VIII B
C 4,7
3 D
E 3,24
4,44 A
1 2,62
2,9 4,8
4,2 Stage 1
Stage 2 Stage 3
Smarco Mandiri
Supermarket
Gambar 5.18. Rute Perjalanan Optimal sub Rute 8
5.4. Perhitungan Utilitas Kapasitas Kendaraan Angkut