Bab 4: Hasil dan Pembahasan
44 A consistency ratio for this matrix has been checked following procedures as
Equations 4
and
Equation 5,
given
n= 8 units,
with
RI= 1.41
refer to Table 4-4. The result shows that
CR = 0.019 10
. This indicated the valid outcomes that the matrices examined are nearly consistent.
The relative importance of the CSF-alternatives and their consistency ratios under the other three evaluation-criteria i.e., Project Phase, Project Monitoring, and Project
Deliveries have been analysed through the same procedures as applied for CSF- alternatives under the Project Type. Their valid outcomes are also presented in the left-
hand side of Table 4-8.
Tabel 4-8: AHP Solution Matrix of CSF-Alternatives under Evaluation-criteria
The best eigenvector solution of evaluation-criteria is derived from Table 4-3 into the right-hand side of Table 4-8, and all of the best eigenvector solutions of CSF-
alternatives are restructured to develop an AHP Solution Tree.
4.6. The Solution through AHP Tree
The relative weights of the best eigenvector solutions are attached in each related element of evaluation-criteria and each related factor of CSF-alternatives accordingly, as
illustrated in Figure 4-1.
Type Phase
Monitoring Delivery
RANKING CRITERIA
MARCON 0.148112189 0.147208722 0.145532894 0.149111634
0.243043916 Type
DEVFOC 0.120130759 0.120809419 0.121197368 0.120710711
INVTEC 0.111336686 0.109605596
0.11438665 0.108990986
0.260811264 Phase
LOCRES 0.111972815 0.111920442 0.112676949 0.108440793
INTBEN 0.100716288 0.103449812 0.107288051 0.099792141
0.291317466 Monitoring
PROCOM 0.131638076 0.130399126 0.129120952 0.129147904
ROPRAC 0.120822242 0.121657447 0.120214404 0.121421841
0.204827355 Delivery
METOOL 0.155270945 0.154949436 0.149582732 0.162383989
Column Sum 1
1 1
1 100
CR
0.0185 0.0210
0.0139 0.0221
0.000
CR
x
ALTERNATIVE RANKING
Bab 4: Hasil dan Pembahasan
45
Gambar 4-1: AHP Solution Tree of CSF-Alternatives under Evaluation-Criteria Source: Adapted from Jaya and Pathirage 2013
It would appear in the AHP solution tree that every factor of CSF-alternatives is related to the relative importance of the individual element of evaluation-criteria.
Therefore, in order to select the most important CSFs among the eight CSF-alternatives, their individual weights should be deconstructed into the AHP solution matrix, which
represents two adjacent matrices in Table 4-8. The left-side matrix is the relative weight of eight CSF-alternatives and the right-side is relative weight of four evaluation-criteria.
Every row of the left-side matrices is multiplied by the related column matrices in the right-side, to obtain the ranking orders of CSF-alternatives to identify their highest priority
of importance as shown in Table 4-9.
Types Phases
Monitoring Deliveries
24.30 26.08
29.13 20.48
MARCON MARCON
MARCON MARCON
DEVFOC DEVFOC
DEVFOC DEVFOC
INVTEC INVTEC
INVTEC INVTEC
LOCRES LOCRES
LOCRES LOCRES
INTBEN INTBEN
INTBEN INTBEN
PROCOM PROCOM
PROCOM PROCOM
ROPRAC ROPRAC
ROPRAC ROPRAC
METOOL METOOL
METOOL METOOL
The Highest Priority CSFs The Highest Priority CSFs
The Highest Priority CSFs The Highest Priority CSFs
The Highest Priority CSFs The Highest Priority CSFs
The Highest Priority CSFs The highest priority CSFs
Bab 4: Hasil dan Pembahasan
46
Tabel 4-9: The Ranking Order of Importance of CSF-alternatives
The first three CSFs in Table 4-9 represent the three priority areas of important CSFs METOOL, MARCON, and PROCOM. The following section discusses the
research findings. Setelah menganalisis dan membahas identifikasi
CSFs
terhadap manajemen biaya pada proyek konstruksi, maka bagian berikut adalah kesimpulan dicatat sebagai
dokumentasi dan rekomendasi untuk penelitian lebih lanjut dimasa yang akan datang.
4.7. Hasil Analisis dan Diskusi