The Solution through AHP Tree 26.08 20.48

Bab 4: Hasil dan Pembahasan 44 A consistency ratio for this matrix has been checked following procedures as Equations 4 and Equation 5, given n= 8 units, with RI= 1.41 refer to Table 4-4. The result shows that CR = 0.019 10 . This indicated the valid outcomes that the matrices examined are nearly consistent. The relative importance of the CSF-alternatives and their consistency ratios under the other three evaluation-criteria i.e., Project Phase, Project Monitoring, and Project Deliveries have been analysed through the same procedures as applied for CSF- alternatives under the Project Type. Their valid outcomes are also presented in the left- hand side of Table 4-8. Tabel 4-8: AHP Solution Matrix of CSF-Alternatives under Evaluation-criteria The best eigenvector solution of evaluation-criteria is derived from Table 4-3 into the right-hand side of Table 4-8, and all of the best eigenvector solutions of CSF- alternatives are restructured to develop an AHP Solution Tree.

4.6. The Solution through AHP Tree

The relative weights of the best eigenvector solutions are attached in each related element of evaluation-criteria and each related factor of CSF-alternatives accordingly, as illustrated in Figure 4-1. Type Phase Monitoring Delivery RANKING CRITERIA MARCON 0.148112189 0.147208722 0.145532894 0.149111634 0.243043916 Type DEVFOC 0.120130759 0.120809419 0.121197368 0.120710711 INVTEC 0.111336686 0.109605596 0.11438665 0.108990986 0.260811264 Phase LOCRES 0.111972815 0.111920442 0.112676949 0.108440793 INTBEN 0.100716288 0.103449812 0.107288051 0.099792141 0.291317466 Monitoring PROCOM 0.131638076 0.130399126 0.129120952 0.129147904 ROPRAC 0.120822242 0.121657447 0.120214404 0.121421841 0.204827355 Delivery METOOL 0.155270945 0.154949436 0.149582732 0.162383989 Column Sum 1 1 1 1 100 CR 0.0185 0.0210 0.0139 0.0221 0.000 CR x ALTERNATIVE RANKING Bab 4: Hasil dan Pembahasan 45 Gambar 4-1: AHP Solution Tree of CSF-Alternatives under Evaluation-Criteria Source: Adapted from Jaya and Pathirage 2013 It would appear in the AHP solution tree that every factor of CSF-alternatives is related to the relative importance of the individual element of evaluation-criteria. Therefore, in order to select the most important CSFs among the eight CSF-alternatives, their individual weights should be deconstructed into the AHP solution matrix, which represents two adjacent matrices in Table 4-8. The left-side matrix is the relative weight of eight CSF-alternatives and the right-side is relative weight of four evaluation-criteria. Every row of the left-side matrices is multiplied by the related column matrices in the right-side, to obtain the ranking orders of CSF-alternatives to identify their highest priority of importance as shown in Table 4-9. Types Phases Monitoring Deliveries

24.30 26.08

29.13 20.48

MARCON MARCON MARCON MARCON DEVFOC DEVFOC DEVFOC DEVFOC INVTEC INVTEC INVTEC INVTEC LOCRES LOCRES LOCRES LOCRES INTBEN INTBEN INTBEN INTBEN PROCOM PROCOM PROCOM PROCOM ROPRAC ROPRAC ROPRAC ROPRAC METOOL METOOL METOOL METOOL The Highest Priority CSFs The Highest Priority CSFs The Highest Priority CSFs The Highest Priority CSFs The Highest Priority CSFs The Highest Priority CSFs The Highest Priority CSFs The highest priority CSFs Bab 4: Hasil dan Pembahasan 46 Tabel 4-9: The Ranking Order of Importance of CSF-alternatives The first three CSFs in Table 4-9 represent the three priority areas of important CSFs METOOL, MARCON, and PROCOM. The following section discusses the research findings. Setelah menganalisis dan membahas identifikasi CSFs terhadap manajemen biaya pada proyek konstruksi, maka bagian berikut adalah kesimpulan dicatat sebagai dokumentasi dan rekomendasi untuk penelitian lebih lanjut dimasa yang akan datang.

4.7. Hasil Analisis dan Diskusi