Proof of the proposition 6 Proof of theorem 8 Proof of theorem 3

with T l t := X i∈I cardKi=l Y k∈Ki s k X n ,i , 32 here by cardK we denote the cardinality of the set K. The expression 32 can be further recast as T l t = X K⊂{1,...,d} cardK=l X i∈I Ki=K Y k∈K s k X n ,i = X K⊂{1,...,d} cardK=l Y k∈K s k X i∈I Ki=K X n ,i . It should be clear that X i∈I Ki=K X n ,i = Y k∈K ∆ k u k t k +1 S n Ut , where the symbol Π is intended as the composition product of differences operators. Recalling that s k = t k − b k u k t k ∆b k u k t k + 1, this leads to T l t = X K⊂{1,...,d} cardK=l Y k∈K t k − b k u k ∆b k u k t k + 1 Y k∈K ∆ k u k t k +1 S n Ut . 33 To complete the proof report this expression to the equation 31.

3.3 Rosenthal and Doob inequalities

When applied to our triangular array, Rosenthal inequality for independent non-identically dis- tributed random variables reads E ¯ ¯ ¯ ¯ X 1≤ j ≤n X n , j ¯ ¯ ¯ ¯ q ≤ c X 1≤ j ≤n σ 2 n , j q2 + X 1≤ j ≤n E |X n , j | q , 34 for every q ≥ 2, with a constant c depending on q only. As in [11] we can also extend Doob inequality for independent non-identicaly distributed variables E max 1≤k≤k n |S n k| q ≤ p p − 1 dq E |S n k n | q , 35 for q 1. 4 Finite-dimensional distributions

4.1 Proof of the proposition 6

We have gt, s = lim mn→∞ µ n t ∧ s . 2270 Take p ∈ N, v 1 , . . . , v p ∈ R and t 1 , . . . , t p ∈ [0, 1] d . Note that for any t , s , r ∈ [0, 1] d we have 1{r ∈ [0, t ∧ s ]} = 1{r ∈ [0, t ] ∩ [0, s ]} = 1{r ∈ [0, t ]}1{r ∈ [0, s ]}. 36 Then p X i=1 p X j=1 v i µ n t i ∧ t j v j = p X i=1 p X j=1 v i v j X k≤k n 1{B n k ∈ [0, t i ∧ t j ]}σ 2 n ,k = X k≤k n σ 2 n ,k p X i=1 v i 1{B n k ∈ [0, t i ]} 2 ≥ 0. Since this holds for each n, taking the limit as mn → ∞ gives the positive definiteness of gt , s .

4.2 Proof of theorem 8

Consider the jump process defined as ζ n t = X 1≤k≤k n 1{Bk ∈ [0, t ]}X n ,k . Now for each t |Ξ n t − ζ n t | = X 1≤k≤k n α n ,k X n ,k , where α n ,k = |R n ,k | −1 |R n ,k | − 1{Bk ∈ [0, t ]}. Now |α n ,k | 1, and vanishes if R n ,k ⊂ [0, t ], or R n ,k ∩ [0, t ] = ∅. Actually α n ,k 6= 0 if and only if k ∈ I , where I is defined by 24. Thus E |Ξ n t − ζ n t | 2 = X k∈I α n ,k σ 2 n ,k ≤ X k∈I σ 2 n ,k ≤ d X l=1 ∆b l u l t l + 1. Using 9 we get |Ξ n t − ζ n t | P − → 0, as mn → ∞. We will concentrate now on finite-dimensional distributions of ζ n . Fix t 1 , . . . , t r ∈ [0, 1] d and v 1 , . . . , v r real, set V n = r X p=1 v j ζ n t p = X 1≤k≤k n α n ,k X n ,k , where α n ,k = r X p=1 v p 1{Bk ∈ [0, t p ]}. 2271 Now using 36 we get b n := E V 2 n = X k≤k n α 2 n ,k σ 2 n ,k = X k≤k n X p X q v p v q 1{Bk ∈ [0, t p ]}1{Bk ∈ [0, t q ]}σ 2 n ,k = X p X q v p v q µ n t p ∧ t q . Letting mn to to infinity and using assumption 5, we obtain b n −−−−−→ mn→∞ X p X q v p v q µt p ∧ t q = E X v p Gt p 2 =: b. If b = 0, then V n converges to zero in distribution since E V 2 n tends to zero. In this special case we also have P p v p Gt p = 0 almost surely, thus the convergence of finite dimensional distributions holds. Assume now, that b 0. For convenience put Y n ,k = α n ,k X n ,k and v = P p P q v p v q . Since Y 2 n ,k ≤ vX 2 n ,k , Y n ,k satisfies the condition of infinitesimal negligibility. For mn large enough to have b n b2, we get 1 E V 2 n X 1≤k≤k n E Y 2 n ,k 1{|Y n ,k | 2 ǫ 2 E V 2 n } ≤ 2v b X 1≤k≤k n E X 2 n ,k 1 |X n ,k | 2 bǫ 2 2v . Thus Lindeberg condition for V n is satisfied and that gives us the convergence of finite dimensional distributions. 5 Tightness results

5.1 Proof of theorem 3

We will use theorem 14. Using Doob inequality we have P sup t ∈[ 0,1] d |Ξ n t | a = Pmax k≤k n |S n k| a ≤ a −2 E S n k n 2 = a −2 → 0, as a → ∞, thus condition i is satisfied. For proving ii note that due to the definitions of v , v + and v − we can write Ξ n v − Ξ n v + = l X i=1 Ξ n v + w i−1 − Ξ n v + w i Ξ n v − Ξ n v − = l X i=1 Ξ n v − w i−1 − Ξ n v − w i 2272 where l is the number of odd coordinates in 2 j v , w = 0, w i has 2 − j in the first i odd coordinates of 2 j v , and zero in other coordinates. So the condition ii holds provided one proves for every ǫ 0 lim J →∞ lim sup n→∞ Π − J , n; ǫ = 0, 37 lim J →∞ lim sup n→∞ Π + J , n; ǫ = 0, 38 where Π − J , n; ǫ := P sup j≥J 2 α j max r∈D j 0≤ℓ≤2 j |Ξ n

r, s

ℓ − Ξ n r − , s ℓ | ǫ , 39 Π + J , n; ǫ := P sup j≥J 2 α j max r∈D j 0≤ℓ≤2 j |Ξ n r + , s ℓ − Ξ n

r, s

ℓ | ǫ , 40 with D j = {2l − 12 − j ; 1 ≤ l ≤ 2 j−1 }, r − = r − 2 − j , ℓ = l 2 , . . . , l d , 2 j = 2 j , . . . , 2 j vector of dimension d − 1 and s ℓ = ℓ2 − j . We prove only the 37, since the proof of 38 is the same. Denote by v = r, s ℓ , and v − = r − , s ℓ . From 32 we have Ξ n

r, s

ℓ − Ξ n r − , s ℓ = S n Uv − S n Uv − + d X l=1 T l v − T l v − . To estimate this increment we discuss according to following configurations Case 1. u 1 r = u 1 r − . Consider first the increment T 1 v − T 1 v − and note that by 33 with l = 1, T 1 v = X 1≤k≤d v k − b k u k v k ∆b k u k v k + 1 ∆ k u k v k +1 S n Uv. Recall the notation 5 and note that by definition v 2:d = v − 2:d with U v = Uv − . Thus all terms indexed by k ≥ 2 disappear in difference T 1 v − T 1 v − . This leads to the factorisation T 1 v − T 1 v − = r − r − ∆b 1 u 1 r + 1 ∆ 1 u 1 r+1 S n Uv. 41 For l ≥ 2, T l v is expressed by 33 as T l v = X 1≤i 1 ···i l ≤d v i 1 − b i 1 u i 1 v i 1 ∆b i 1 u i 1 v i 1 + 1 . . . v i l − b i l u i l v i l ∆b i l u i l v i l + 1 ∆ i 1 u i1 v i1 +1 . . . ∆ i l u il v il +1 S n Uv. In the difference T 1 v − T 1 v − all the terms for which i 1 ≥ 2 again disappear and we obtain T l v − T l v − = r − r − ∆b 1 u 1 r + 1 X 1i 2 ···i l ≤d v i 2 − b i 2 u i 2 v i 2 ∆b i 1 u i 1 v i 1 + 1 . . . v i l − b i l u i l v i l ∆b i l u i l v i l + 1 ∆ 1 u 1 r+1 ∆ i 2 u i2 v i2 +1 . . . ∆ i l u il v il +1 S n Uv. 42 2273 Since u 1 r = u 1 r − , we have b 1 u 1 r ≤ r r − b 1 u 1 r + 1, thus r − r

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52