Hölder spaces and tightness criteria v v Summation process

Theorem 13. Suppose condition 9 and following conditions hold: 1. For every ǫ 0, lim mn→∞ X 1≤k≤k n P|X n ,k | ≥ ǫσ 2α n ,k = 0. 14 2. For every ǫ 0, lim mn→∞ X 1≤k≤k n E X 2 n ,k 1{|X n ,k | ≥ ǫ} = 0. 15 3. For some q 112 − α, lim τ→0 lim mn→∞ X 1≤k≤k n σ −2qα n ,k E |X n ,k,τ | q = 0. 16 Then the net {Ξ n , n ∈ N} is tight in the space H o α [0, 1] d . 3 Background and tools

3.1 Hölder spaces and tightness criteria

We present briefly here some structure property of H o α [0, 1] d which is needed to obtain a tightness criterion. For more details, the reader is referred to [6] and [8]. Set W j = {k2 − j ; 0 ≤ k ≤ 2 j } d , j = 0, 1, 2, . . . and V := W , V j := W j \ W j−1 , j ≥ 1, so V j is the set of dyadic points v = k 1 2 − j , . . . , k d 2 − j in W j with at least one k i odd. Define λ 0,v x = xv , v ∈ V ; λ

j,v

x = xv − 1 2 xv − + xv + , v ∈ V j , j ≥ 1, where v − and v + are defined as follows. Each v ∈ V j admits a unique representation v = v 1 , . . . , v d with v i = k i 2 j , 1 ≤ i ≤ d. The points v − = v − 1 , . . . , v − d and v + = v + 1 , . . . , v + d are defined by v − i = v i − 2 − j , if k i is odd; v i , if k i is even v + i = v i + 2 − j , if k i is odd; v i , if k i is even, We will use the following tightness criteria. Theorem 14. Let {ζ n , n ∈ N d } be a net of random elements with values in the space H o α [0, 1] d . Assume that the following conditions are satisfied. 2266 i lim a→∞ sup n Psup t ∈[ 0,1] d |ζ n t | a = 0. ii For each ǫ 0 lim J →∞ lim sup mn→∞ Psup j≥J 2 α j max v ∈V j |λ

j,v

ζ n | ǫ = 0. Then the net {ζ n , n ∈ N d } is assymptoticaly tight in the space H o α [0, 1] d . Proof. The proof is the same as in theorem 2 in [12].

3.2 Summation process

For t ∈ [0, 1] and t ∈ [0, 1] d , write u i t := max{ j ≥ 0 : b i j ≤ t}, Ut := u 1 t 1 , . . . , u d t d . Note that Ut ∈ N d . Recalling 6, write ∆Bk := ∆b 1 k 1 , . . . , ∆b d k d . In [11] it was shown that process ξ n defined by 2 has a certain barycentric representation. We will prove that similar representation exists for process Ξ n . Proposition 15. Let us write any t ∈ [0, 1] d as the barycenter of the 2 d vertices V u := BUt + u∆BUt + 1, u ∈ { 0, 1} d , 17 of the rectangle R n ,Ut + 1 with some weights wu ≥ 0 depending on t , i.e., t = X u∈{ 0,1} d wuV u, where X u∈{ 0,1} d wu = 1. 18 Using this representation, define the random field Ξ ∗ n by Ξ ∗ n t = X u∈{ 0,1} d wuS n Ut + u, t ∈ [ 0, 1] d . Then Ξ ∗ n coincides with the summation process defined by 8. Proof. For fixed n ≥ 1 ∈ N d , any t 6= 1 ∈ [0, 1] d belongs to a unique rectangle R n , j , defined by 7, namely R n ,Ut + 1 . Then the 2 d vertices of this rectangle are clearly the points V u given by 17. Put s = t − BUt ∆BUt + 1 , whence t = BUt + s ∆BUt + 1, 19 recalling that in this formula the division of vector is componentwise. For any non empty subset L of {1, . . . , d}, we denote by {0, 1} L the set of binary vectors indexed by L. In particular {0, 1} d is an abridged notation for {0, 1} {1,...,d} . Now define the non negative weights w L u := Y l∈L s u l l 1 − s l 1−u l , u ∈ { 0, 1} L 2267 and when L = {1, . . . , d}, simplify this notation in wu. For fixed L, the sum of all these weights is one since X u∈{ 0,1} L w L u = Y l∈L s l + 1 − s l = 1. 20 The special case L = {1, . . . , d} gives the second equality in 18. From 20 we immediately deduce that for any K non empty and strictly included in {1, . . . , d}, with L := {1, . . . , d} \ K, X u∈{ 0,1} d , ∀k∈K, u k =1 wu = Y k∈K s k X u∈{ 0,1} L s u l l 1 − s l 1−u l = Y k∈K s k . 21 Formula 21 remains obviously valid in the case where K = {1, . . . , d}. Now let us observe that X u∈{ 0,1} d wuV u = X u∈{ 0,1} d wu BUt + u∆BUt + 1 = BUt + ∆BUt + 1 X u∈{ 0,1} d wuu. Comparing with the expression of t given by 19, we see that the first equality in 18 will be established if we check that s ′ := X u∈{ 0,1} d wuu = s . 22 This is easily seen componentwise using 21 because for any fixed l ∈ {1, . . . , d}, s ′ l = X u∈{ 0,1} d , u l =1 wu = Y k∈{l} s k = s l . Next we check that Ξ n t = Ξ ∗ n t for every t ∈ [0, 1] d . Introduce the notation D t ,u := N d ∩ 0, Ut + u \ 0, Ut . Then we have Ξ ∗ n t = X u∈{ 0,1} d wu S n Ut + S n Ut + u − S n Ut = S n Ut + X u∈{ 0,1} d wu X i∈D t ,u X n ,i . Now in view of 8, the proof of Ξ n t = Ξ ∗ n t reduces clearly to that of X u∈{ 0,1} d wu X i∈D t ,u X n ,i = X i∈I |R n ,i | −1 |R n ,i ∩ [0, t ]|X n ,i , 23 where I := {i ≤ k n ; ∀k ∈ {1, . . . , d}, i k ≤ u k t k + 1 and ∃l ∈ {1, . . . , d}, i l = u k t k + 1}. 24 2268 Clearly I is the union of all D t ,u , u ∈ {0, 1} d , so we can rewrite the left hand side of 23 under the form P i∈I a i X i . For i ∈ I, put Ki := k ∈ {1, . . . , d}; i k = u k t k + 1 . 25 Then observe that for i ∈ I, the u’s such that i ∈ D t ,u are exactly those which satisfy u k = 1 for every k ∈ Ki. Using 21, this gives ∀i ∈ I, a i = X u∈{ 0,1} d , ∀k∈Ki, u k =1 wu = Y k∈Ki s k . 26 On the other hand we have for every i ∈ I, |R n ,i ∩ [0, t ]| = Y k∈Ki t k − b k u k t k Y k ∈Ki ∆b

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52