Proof of the theorem 13 ǫ ≤ Π ǫ, τ + PA ǫ, τ = P max ǫ, τ. ǫ, τ ≤ Π ǫ, τ, where ǫ, τ = P max ǫ, τ ≤ ǫ ≤ c lim sup

Reporting estimate 56 to 54 we get I J , n, q ≤ C X k≤k n ∆b 1 k 1 −qα E |X n ,k | q ≤ X k≤k n σ −2qα n ,k E |X n ,k | q and substituting this to inequality 53 we get Π 1 J , n; ǫ ≤ C 1 ǫ −q 2 −J qα+1−q2 + C 2 X k≤k n σ −2qα n ,k E |X n ,k | q . Thus 51 follows from 10, and condition ii holds.

5.2 Proof of the theorem 13

It suffices to check that 50 and 51 hold. Proof of 50 Define: S n ,τ k = X 1≤ j ≤k X n , j ,τ , S ′ n ,τ k = X 1≤ j ≤k X n , j ,τ − E X n , j ,τ . 57 and A n = ½ max 1≤k≤k n |X k | ≤ τσ 2α n ,k ¾ . Then the we can estimate the probability in 50 by P max 1≤k≤k n |∆ 1 k 1 S n k| ∆b 1 k 1 α ǫ =: Π 1

n, ǫ ≤ Π

1 n, ǫ, τ + PA c n where Π 1

n, ǫ, τ = P max

1≤k≤k n |∆ 1 k 1 S n ,τ k| ∆b 1 k 1 α ǫ . 58 Due to 14 the probability PA c n tends to zero so we need only to study the asymptotics of Π 1

n, ǫ, τ.

Recall the definition 57. Using the splitting ∆ 1 k 1 S n ,τ k = ∆ 1 k 1 S ′ n ,τ k + E ∆ 1 k 1 S n ,τ k, let us begin with some estimate of the expectation term, since X n , j ,τ are not centered. We have E |X n , j ,τ | ≤ E 12 X 2 n , j P 12 |X n , j | τσ 2α n , j 2278 By applying Cauchy inequality we get max 1≤k≤k n |E ∆ 1 k 1 S n ,τ k| ∆b 1 k 1 α ≤ max 1≤k 1 ≤k 1 n P k n ,2:d k 2:d =1 E |X n , j ,τ | ∆b 1 k 1 α ≤ max 1≤k 1 ≤k 1 n ∆b 1 k 1 12 P k n ,2:d k 2:d =1 P|X n ,k | τσ 2α n ,k 12 ∆b 1 k 1 α ≤ max 1≤k 1 ≤k 1 n ∆b 1 k 1 12−α X 1≤k≤k n P|X n ,k | τσ 2α n ,k 12 . Due to 9 and 14 the last expression is bounded by ǫ2 for n ≥ n , where n depends on ǫ and τ. Thus for n ≥ n we have Π 1

n, ǫ, τ ≤ Π

′ 1

n, ǫ, τ, where

Π ′ 1

n, ǫ, τ = P max

1≤k≤k n |∆ 1 k 1 S ′ n ,τ k| ∆b 1 k 1 α ǫ2 59 Since Var X n ,k,τ ≤ E X 2 n ,k,τ ≤ E X 2 n ,k = σ 2 n ,k , using Markov, Doob and Rosenthal inequalities for q 112 − α we get Π ′ 1

n, ǫ, τ ≤

k 1 n X k=1 ǫ2 −q ∆b 1 k −qα E |∆ 1 k S ′ n ,τ k n | q ≤ c k 1 n X k=1 ǫ2 −q ∆b 1 k −qα ∆b 1 k q2 + k n ,2:d X k 2:d =1 E |X n ,k,τ | q ≤ cǫ2 −q k 1 n X k=1 ∆b 1 k q12−α + X 1≤k≤k n σ −2qα n ,k E |X n ,k,τ | q . Note that this estimate holds for each τ 0. Combining all the estimates we get ∀τ 0, lim sup mn→∞ Π 1

n, ǫ ≤ c lim sup

mn→∞ X 1≤k≤k n σ −2qα n ,k E |X n ,k,τ | q . with the constant c depending only on q. By letting τ → 0 due to 16, 50 follows. Proof of 51 Introduce similar definitions ψ n ,τ r, r − and ψ ′ n ,τ r, r − by exchanging variables X n ,k with variables X n ,k,τ and X ′ n ,k,τ := X n ,k,τ − E X n ,k,τ respectively. Similar to the proof of 50 we get that we need only to deal with asymptotics of Π 2 J , n, ǫ, τ, where Π 2 J , n, ǫ, τ = P sup j≥J 2 α j max r∈D j ψ n ,τ r, r − ǫ . 2279 Again we need to estimate the expectation term. We have sup j≥J 2 α j max r∈D j max 1 2:d ≤k

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52