s s s k Us s

Since u 1 r = u 1 r − , we have b 1 u 1 r ≤ r r − b 1 u 1 r + 1, thus r − r − ∆b 1 u 1 r + 1 ≤ r − r − ∆b 1 u 1 r + 1 α . Now v i 2 − b i 2 u i 2 v i 2 ∆b i 1 u i 1 v i 1 + 1 . . . v i l − b i l u i l v i l ∆b i l u i l v i l + 1 1 and |∆ 1 u 1 r+1 ∆ i 2 u i2 v i2 +1 . . . ∆ i l u il v il +1 S n Uv| = |∆ 1 u 1 r+1 X i∈I ǫ i S n i| ≤ X i∈I |∆ 1 u 1 r+1 S n i|, 43 where ǫ i = ±1 and I is some appropriate subset of [0, n] ∩ N d with 2 l−1 elements. Denote for convenience Z n = max 1≤k≤k n |∆ 1 k 1 S n k| ∆b 1 k 1 α . 44 Now noting that r − r − = 2 − j and ∆b 1 k 1 depends only on k 1 , we obtain for l ≥ 2 |T l u ′ − T l u| ≤ 2 − jα d − 1 l − 1 2 l−1 Z n . Thus |Ξ n v − Ξ n v − | ≤ d X l=1 2 − jα d − 1 l − 1 2 l−1 Z n = 3 d−1 2 − jα Z n 45 Case 2. u 1 r = u 1 r − + 1. In this case we have b 1 u 1 r − ≤ r − b 1 u 1 r ≤ r. Using previous definitions we can write |Ξ n v − Ξ n v − | ≤ |Ξ n v − Ξ n b 1 u 1

r, s

ℓ | + |Ξ n b 1 u 1

r, s

ℓ − Ξ n v − |. Now r − b 1 u 1 r ∆b 1 u 1 r + 1 ≤ r − b 1 u 1 r ∆b 1 u 1 r + 1 α ≤ 2 − jα ∆b 1 u 1 r + 1 α and similarly b 1 u 1 r − r − ∆b 1 u 1 r − + 1 ≤ 2 − jα ∆b 1 u 1 r − + 1 α . Combining these inequalities with 41 and 42 we get as in45 |Ξ n v − Ξ n v − | ≤ 2 · 3 d−1 2 − jα Z n . 2274 Case 3. u 1 r u 1 r − + 1. Put u = b 1 u 1

r, s

ℓ , u − = b 1 u 1 r − + 1, s ℓ and ψ n r, r − = max k 2:d ≤k n ,2:d ¯ ¯ ¯ ¯ u 1 r X i=u 1 r − +2 ∆ 1 i S n

i, k

2:d ¯ ¯ ¯ ¯ . 46 Then |Ξ n v − Ξ n v − | ≤ |Ξ n v − Ξ n u| + |Ξ n u − Ξ n u − | + |Ξ n u − − Ξ n v − | Recall notation 5 and note that U u 2:d = Uu − 2:d = Uv 2:d . We have Ξ n u = S n Uu+ d−1 X l=1 X 2≤i 1 i 2 ···i l ≤d l Y k=1 v i k − b i k u i k v i k ∆b i k u i k v i k + 1 l Y k=1 ∆ i k u ik v ik +1 S n Uu and similar representation holds for Ξ n u − . Since S n Uu − S n Uu − = u 1 r X i=u 1 r − +2 ∆ 1 i S n

i, Us

ℓ , similar to 43 and 45 we get |Ξ n u − Ξ n u − | ≤ ψ n r, r − d−1 X l=0 2 l ≤ 3 d−1 ψ n r, r − . We can bound |Ξ n v − Ξ n u| and |Ξ n u − − Ξ n v| as in case 2. Thus we get |Ξ n

r, s

ℓ − Ξ n r − , s ℓ | ≤ 3 d−1 ψ n r, r − + 2 · 3 d−1 2 − jα Z n . 47 Substituting this inequality into 39 we get that Π − J , n; ǫ ≤ Π 1 J , n; ǫ2 · 3 d−1 + Π 2 n; ǫ4 · 3 d−1 where Π 1 J , n; ǫ = P Z n ǫ 48 and Π 2 J , n; ǫ = P sup j≥J 2 − jα max r∈D j ψ n r, r − ǫ . 49 2275 Thus 37 will hold if lim J →∞ lim sup n→∞ Π 1 J , n; ǫ = 0, 50 lim J →∞ lim sup n→∞ Π 2 J , n; ǫ = 0. 51 Proof of 50. Using Markov and Doob inequalities for q 112 − α P Z n ǫ ≤ k 1 n X k=1 P max k 2:d ≤k n ,2:d |∆ 1 k S n k| ǫ∆b 1 k α ≤ k 1 n X k=1 ǫ −q ∆b 1 k −qα E max k 2:d ≤k n ,2:d |∆ 1 k S n k| q ≤ k 1 n X k=1 ǫ −q ∆b 1 k −qα E |∆ 1 k S n k n | q . By applying the Rosenthal inequality we get P Z n ǫ ≤ c k 1 n X k=1 ǫ −q ∆b 1 k −qα ∆b 1 k q2 + k 2 n X k 2 =1 · · · k d n X k d =1 E |X n ,k | q . 52 We have k 1 n X k=1 ∆b 1 k q12−α ≤ max 1≤k≤k 1 n ∆b 1 k q12−α−1 k 1 n X k=1 ∆b 1 k = max 1≤k≤k 1 n ∆b 1 k q12−α−1 → 0, as mn → ∞, due to 9 and the fact that q 12 − α. Also k 1 n X k=1 ∆b 1 k −qα k 2 n X k 2 =1 · · · k d n X k d =1 E |X n ,k | q = X k≤k n ∆b 1 k 1 −qα E |X n ,k | q ≤ X k≤k n σ −2qα n ,k E |X n ,k | q → 0, as mn → ∞, due to 10, since ∆b 1 k 1 −qα ≤ σ −2qα n ,k for all 1 ≤ k ≤ k n . Reporting these estimates to 52 we see that 9 and 10 imply 50. Proof of 51. We have Π 2 J , n, ǫ ≤ X j≥J P2 α j max r∈D j ψ n r, r − ǫ ≤ X j≥J X r∈D j ǫ −q 2 α jq E |ψ n r, r − | q . 2276 Doob inequality together with 34 gives us E ψ n r, r − q ≤ E ¯ ¯ ¯ ¯ X k 2:d ≤k n ,2:d u 1 r X k 1 =u 1 r − +2 X n ,k ¯ ¯ ¯ ¯ q ≤ c u 1 r X k 1 =u 1 r − +2 X k 2:d ≤k n ,2:d σ 2 n ,k q2 + u 1 r X k 1 =u 1 r − +2 X k 2:d ≤k n ,2:d E |X n ,k | q . Due to definition of u 1 r u 1 r X k 1 =u 1 r − +2 X 1≤k 2:d ≤k n ,2:d σ 2 n ,k = u 1 r X k 1 =u 1 r − +2 ∆b 1 k 1 ≤ r − r − = 2 − j , thus Π 1 J , n, ǫ ≤ c ǫ q X j≥J 2 qα+1−q2 j + c ǫ q X j≥J X r∈D j 2 qα j u 1 r X k 1 =u 1 r − +2 X k 2:d ≤k n ,2:d E |X n ,k | q . 53 Denote by IJ , n, q the second sum without the constant cǫ −q . By changing the order of summation we get I J , n, q = X 1≤k≤k n E |X n ,k | q X j≥J 2 αq j X r∈D j 1{u 1 r − + 1 k 1 ≤ u 1 r}. 54 The proof further proceeds as in one dimensional case [7]. Consider for fixed k 1 the condition u 1 r − + 1 k 1 u 1 r. 55 Suppose that there exists r ∈ D j satisfying 55 and take another r ′ ∈ D j . Since u 1 is non decreasing, if r ′ r − we have u 1 r ′ u 1 r − + 1 k, and thus r ′ cannot satisfy 55. If r ′ r, we have that r ′− r, and we have that k ≤ u 1 r ≤ u 1 r ′− u 1 r ′− + 1 and again if follows that r ′ cannot satisfy 55. Thus there will exists at most only one r satisfying 55. If such r exists we have r − ≤ u 1 r − +1 X i=1 ∆b 1 i k 1 X i=1 ∆b 1 i ≤ u 1 r X i=1 ∆b 1 i ≤ r. Thus ∆b 1 k 1 ≤ 2 − j . So ∀k 1 = 1, . . . , k 1 n , X r∈D j 1{u 1 r − + 1 k 1 ≤ u 1 r} ≤ 1{∆b 1 k 1 ≤ 2 − j } so X j≥J 2 αq j X r∈D j 1{u 1 r − + 1 k 1 ≤ u 1 r} ≤ 2 qα 2 qα − 1 ∆b 1 k 1 −αq 56 we can sum only those j, for which ∆b 1 k 1 ≤ 2 − j , because for larger j, r and r − will be closer together and will fall in the same R n ,k . 2277 Reporting estimate 56 to 54 we get I J , n, q ≤ C X k≤k n ∆b 1 k 1 −qα E |X n ,k | q ≤ X k≤k n σ −2qα n ,k E |X n ,k | q and substituting this to inequality 53 we get Π 1 J , n; ǫ ≤ C 1 ǫ −q 2 −J qα+1−q2 + C 2 X k≤k n σ −2qα n ,k E |X n ,k | q . Thus 51 follows from 10, and condition ii holds.

5.2 Proof of the theorem 13

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52