Since u
1
r = u
1
r
−
, we have b
1
u
1
r ≤ r r
−
b
1
u
1
r + 1, thus r − r
−
∆b
1
u
1
r + 1 ≤
r − r
−
∆b
1
u
1
r + 1
α
. Now
v
i
2
− b
i
2
u
i
2
v
i
2
∆b
i
1
u
i
1
v
i
1
+ 1 . . .
v
i
l
− b
i
l
u
i
l
v
i
l
∆b
i
l
u
i
l
v
i
l
+ 1 1
and |∆
1 u
1
r+1
∆
i
2
u
i2
v
i2
+1
. . . ∆
i
l
u
il
v
il
+1
S
n
Uv| = |∆
1 u
1
r+1
X
i∈I
ǫ
i
S
n
i|
≤ X
i∈I
|∆
1 u
1
r+1
S
n
i|,
43 where ǫ
i
= ±1 and I is some appropriate subset of [0, n] ∩ N
d
with 2
l−1
elements. Denote for convenience
Z
n
= max
1≤k≤k
n
|∆
1 k
1
S
n
k|
∆b
1
k
1 α
. 44
Now noting that r − r
−
= 2
− j
and ∆b
1
k
1
depends only on k
1
, we obtain for l ≥ 2 |T
l
u
′
− T
l
u| ≤ 2
− jα
d − 1 l − 1
2
l−1
Z
n
. Thus
|Ξ
n
v − Ξ
n
v
−
| ≤
d
X
l=1
2
− jα
d − 1 l − 1
2
l−1
Z
n
= 3
d−1
2
− jα
Z
n
45 Case 2. u
1
r = u
1
r
−
+ 1. In this case we have b
1
u
1
r
−
≤ r
−
b
1
u
1
r ≤ r. Using previous definitions we can write
|Ξ
n
v − Ξ
n
v
−
| ≤ |Ξ
n
v − Ξ
n
b
1
u
1
r, s
ℓ
| + |Ξ
n
b
1
u
1
r, s
ℓ
− Ξ
n
v
−
|. Now
r − b
1
u
1
r ∆b
1
u
1
r + 1 ≤
r − b
1
u
1
r ∆b
1
u
1
r + 1
α
≤ 2
− jα
∆b
1
u
1
r + 1
α
and similarly b
1
u
1
r − r
−
∆b
1
u
1
r
−
+ 1 ≤
2
− jα
∆b
1
u
1
r
−
+ 1
α
. Combining these inequalities with 41 and 42 we get as in45
|Ξ
n
v − Ξ
n
v
−
| ≤ 2 · 3
d−1
2
− jα
Z
n
. 2274
Case 3. u
1
r u
1
r
−
+ 1. Put
u = b
1
u
1
r, s
ℓ
,
u
−
= b
1
u
1
r
−
+ 1, s
ℓ
and ψ
n
r, r
−
= max
k
2:d
≤k
n ,2:d
¯ ¯
¯ ¯
u
1
r
X
i=u
1
r
−
+2
∆
1 i
S
n
i, k
2:d
¯ ¯
¯ ¯
. 46
Then |Ξ
n
v − Ξ
n
v
−
| ≤ |Ξ
n
v − Ξ
n
u| + |Ξ
n
u − Ξ
n
u
−
| + |Ξ
n
u
−
− Ξ
n
v
−
|
Recall notation 5 and note that U u
2:d
= Uu
− 2:d
= Uv
2:d
. We have Ξ
n
u = S
n
Uu+
d−1
X
l=1
X
2≤i
1
i
2
···i
l
≤d l
Y
k=1
v
i
k
− b
i
k
u
i
k
v
i
k
∆b
i
k
u
i
k
v
i
k
+ 1
l
Y
k=1
∆
i
k
u
ik
v
ik
+1
S
n
Uu
and similar representation holds for Ξ
n
u
−
. Since S
n
Uu − S
n
Uu
−
=
u
1
r
X
i=u
1
r
−
+2
∆
1 i
S
n
i, Us
ℓ
, similar to 43 and 45 we get
|Ξ
n
u − Ξ
n
u
−
| ≤ ψ
n
r, r
− d−1
X
l=0
2
l
≤ 3
d−1
ψ
n
r, r
−
. We can bound |Ξ
n
v − Ξ
n
u| and |Ξ
n
u
−
− Ξ
n
v| as in case 2. Thus we get
|Ξ
n
r, s
ℓ
− Ξ
n
r
−
, s
ℓ
| ≤ 3
d−1
ψ
n
r, r
−
+ 2 · 3
d−1
2
− jα
Z
n
. 47
Substituting this inequality into 39 we get that Π
−
J , n; ǫ ≤ Π
1
J , n; ǫ2 · 3
d−1
+ Π
2
n; ǫ4 · 3
d−1
where Π
1
J , n; ǫ = P
Z
n
ǫ 48
and Π
2
J , n; ǫ = P
sup
j≥J
2
− jα
max
r∈D
j
ψ
n
r, r
−
ǫ .
49
2275
Thus 37 will hold if lim
J →∞
lim sup
n→∞
Π
1
J , n; ǫ = 0, 50
lim
J →∞
lim sup
n→∞
Π
2
J , n; ǫ = 0. 51
Proof of 50. Using Markov and Doob inequalities for q 112 − α P
Z
n
ǫ ≤
k
1 n
X
k=1
P max
k
2:d
≤k
n ,2:d
|∆
1 k
S
n
k| ǫ∆b
1
k
α
≤
k
1 n
X
k=1
ǫ
−q
∆b
1
k
−qα
E max
k
2:d
≤k
n ,2:d
|∆
1 k
S
n
k|
q
≤
k
1 n
X
k=1
ǫ
−q
∆b
1
k
−qα
E |∆
1 k
S
n
k
n
|
q
. By applying the Rosenthal inequality we get
P Z
n
ǫ ≤ c
k
1 n
X
k=1
ǫ
−q
∆b
1
k
−qα
∆b
1
k
q2
+
k
2 n
X
k
2
=1
· · ·
k
d n
X
k
d
=1
E |X
n ,k
|
q
. 52
We have
k
1 n
X
k=1
∆b
1
k
q12−α
≤ max
1≤k≤k
1
n
∆b
1
k
q12−α−1 k
1 n
X
k=1
∆b
1
k =
max
1≤k≤k
1
n
∆b
1
k
q12−α−1
→ 0, as mn → ∞,
due to 9 and the fact that q 12 − α. Also
k
1 n
X
k=1
∆b
1
k
−qα k
2 n
X
k
2
=1
· · ·
k
d n
X
k
d
=1
E |X
n ,k
|
q
= X
k≤k
n
∆b
1
k
1 −qα
E |X
n ,k
|
q
≤ X
k≤k
n
σ
−2qα n
,k
E |X
n ,k
|
q
→ 0, as mn → ∞,
due to 10, since ∆b
1
k
1 −qα
≤ σ
−2qα n
,k
for all 1 ≤ k ≤ k
n
. Reporting these estimates to 52 we see that 9 and 10 imply 50.
Proof of 51. We have Π
2
J , n, ǫ ≤
X
j≥J
P2
α j
max
r∈D
j
ψ
n
r, r
−
ǫ ≤
X
j≥J
X
r∈D
j
ǫ
−q
2
α jq
E |ψ
n
r, r
−
|
q
.
2276
Doob inequality together with 34 gives us
E ψ
n
r, r
− q
≤ E ¯
¯ ¯
¯ X
k
2:d
≤k
n ,2:d
u
1
r
X
k
1
=u
1
r
−
+2
X
n ,k
¯ ¯
¯ ¯
q
≤ c
u
1
r
X
k
1
=u
1
r
−
+2
X
k
2:d
≤k
n ,2:d
σ
2 n
,k
q2
+
u
1
r
X
k
1
=u
1
r
−
+2
X
k
2:d
≤k
n ,2:d
E |X
n ,k
|
q
. Due to definition of u
1
r
u
1
r
X
k
1
=u
1
r
−
+2
X
1≤k
2:d
≤k
n ,2:d
σ
2 n
,k
=
u
1
r
X
k
1
=u
1
r
−
+2
∆b
1
k
1
≤ r − r
−
= 2
− j
, thus
Π
1
J , n, ǫ ≤
c ǫ
q
X
j≥J
2
qα+1−q2 j
+ c
ǫ
q
X
j≥J
X
r∈D
j
2
qα j u
1
r
X
k
1
=u
1
r
−
+2
X
k
2:d
≤k
n ,2:d
E |X
n ,k
|
q
. 53
Denote by IJ , n, q the second sum without the constant cǫ
−q
. By changing the order of summation we get
I J , n, q =
X
1≤k≤k
n
E |X
n ,k
|
q
X
j≥J
2
αq j
X
r∈D
j
1{u
1
r
−
+ 1 k
1
≤ u
1
r}. 54
The proof further proceeds as in one dimensional case [7]. Consider for fixed k
1
the condition u
1
r
−
+ 1 k
1
u
1
r. 55
Suppose that there exists r ∈ D
j
satisfying 55 and take another r
′
∈ D
j
. Since u
1
is non decreasing, if r
′
r
−
we have u
1
r
′
u
1
r
−
+ 1 k, and thus r
′
cannot satisfy 55. If r
′
r, we have that r
′−
r, and we have that k ≤ u
1
r ≤ u
1
r
′−
u
1
r
′−
+ 1 and again if follows that r
′
cannot satisfy 55. Thus there will exists at most only one r satisfying 55. If such r exists we have
r
−
≤
u
1
r
−
+1
X
i=1
∆b
1
i
k
1
X
i=1
∆b
1
i ≤
u
1
r
X
i=1
∆b
1
i ≤ r. Thus ∆b
1
k
1
≤ 2
− j
. So ∀k
1
= 1, . . . , k
1 n
, X
r∈D
j
1{u
1
r
−
+ 1 k
1
≤ u
1
r} ≤ 1{∆b
1
k
1
≤ 2
− j
} so
X
j≥J
2
αq j
X
r∈D
j
1{u
1
r
−
+ 1 k
1
≤ u
1
r} ≤ 2
qα
2
qα
− 1 ∆b
1
k
1 −αq
56 we can sum only those j, for which ∆b
1
k
1
≤ 2
− j
, because for larger j, r and r
−
will be closer together and will fall in the same R
n ,k
. 2277
Reporting estimate 56 to 54 we get
I J , n, q ≤ C
X
k≤k
n
∆b
1
k
1 −qα
E |X
n ,k
|
q
≤ X
k≤k
n
σ
−2qα n
,k
E |X
n ,k
|
q
and substituting this to inequality 53 we get Π
1
J , n; ǫ ≤ C
1
ǫ
−q
2
−J qα+1−q2
+ C
2
X
k≤k
n
σ
−2qα n
,k
E |X
n ,k
|
q
. Thus 51 follows from 10, and condition ii holds.
5.2 Proof of the theorem 13