Preliminaries getdoc5214. 400KB Jun 04 2011 12:04:23 AM

Therefore, we deduce from 39 that ν ≥ λ Q . On the other hand, the matrix Q N is finite so that, according to the Perron-Frobenius Theorem, its spectral radius is equal to its largest eigenvalue λ Q N and is given by the formula λ Q N = sup x 1 ,...,x N min j P N i= 1 x i qi , j x j where the supremum is taken over all N -dimensional vectors with strictly positive coefficients c.f. 1.1 p.4 of [19]. In view of 40, we deduce that λ Q N ≥ ν − ǫ. Furthermore, when Q N is irreducible, Theorem 6.8 of [19] states that λ Q N ≤ λ Q . We conclude that λ Q ≤ ν ≤ λ Q + ǫ.

7.1 Preliminaries

Recall the construction of the random variables ξ i i ≥1 given in Definition 3.1 and set E m ,n def = in the finite sequence ξ 1 , ξ 2 , . . . , ξ M , there are at least m terms equal to 0 and exactly n terms are equal to 1 before the m th E ′ m ,n def = in the finite sequence ξ 1 , ξ 2 , . . . , ξ M , there are exactly m terms equal to 0 and exactly n terms equal to 1 . Let us note that, for n + m M , P {E m ,n } = P{E ′ m ,n } = 0. 41 In the rest of this section, we use the notation s def = q q + 1 − qb = P{ξ M + 1 = 1 | ξ M + 1 ∈ {0, 1}}. Lemma 7.3. For i , j ≥ 1, the coefficient pi, j of the matrix P associated with the cookie environment C = p 1 , . . . , p M ; q is given by pi , j = P{E i , j } + X 0≤n≤ j 0≤m≤i−1 P {E ′ m ,n } j + i − m − n − 1 j − n s j −n 1 − s i −m . Proof. Recall that pi, j is equal to the probability of having j times 1 in the sequence ξ l l ≥1 before the i th 0. We decompose this event according to the number of 0’s and 1’s in the subsequence ξ l l ≤M . Let F m ,n be the event F m ,n def = {in the sub-sequence ξ i i M , n terms equal to 1 before the m th failure}. 1661 Thus we have pi , j = P{E i , j } + X 0≤n≤ j 0≤m≤i−1 P {E ′ m ,n }P{F i −m, j−n } 42 the first term of the r.h.s. of the equation comes from the case m = i which cannot be included in the sum. Since the sequence ξ i i M is a sequence of i.i.d. random variables, it is easy to compute P {F m ,n }. Indeed, noticing that, P {F m ,n } = P{F m ,n | ξ l ∈ {0, 1} for all l ∈ [M, M + n + m]}, we get P {F m ,n } = n + m − 1 n s n 1 − s m . 43 The combination of 42 and 43 completes the proof of the lemma. We can now compute the image t Y P of the exponential vector Y = s1 − s i −1 i ≥1 . Let us first recall the notation λ sym def = q b 1 − q M Y i= 1 ‚ 1 − p i q b 1 − q + b − 1p i b + p i b q b 1 − q −1 Œ . We use the convention that P v u = 0 when u v. Lemma 7.4. We have ∞ X i= 1 pi , j  s 1 − s ‹ i −1 = λ sym  s 1 − s ‹ j −1 + A j, with A j def = M − j X i= 1 P {E i , j }  s 1 − s ‹ i −1 − M X n= j+ 1 M −n X m= P {E ′ m ,n }  s 1 − s ‹ j+m −n . In particular, A j = 0 for j ≥ M. Proof. With the help of Lemma 7.3, and in view of 41, we have ∞ X i= 1 pi , j  s 1 − s ‹ i −1 = ∞ X i= 1 P {E i , j }  s 1−s ‹ i −1 + ∞ X i= 1 X 0≤n≤ j 0≤m≤i−1 P {E ′ m ,n } j+i−m−n−1 j − n s j+i −n−1 1−s 1−m = M − j X i= 1 P {E i , j }  s 1−s ‹ i −1 + X 0≤n≤ j∧M 0≤m≤M−n P {E ′ m ,n } ∞ X i= j + i − n i s j+i+m −n 1−s 1−m . Using the relation ∞ X i= j + i − n i s j+i+m −n 1 − s 1−m =  s 1 − s ‹ j+m −n , 1662 we deduce that ∞ X i= 1 pi , j  s 1−s ‹ i −1 = M − j X i= 1 P {E i , j }  s 1−s ‹ i −1 + j ∧M X n= M −n X m= P {E ′ m ,n }  s 1−s ‹ j+m −n . = M X n= M −n X m= P {E ′ m ,n }  s 1−s ‹ j+m −n + A j. It simply remains to show that λ sym = M X n= M −n X m= P {E ′ m ,n }  s 1 − s ‹ m −n+1 . 44 Let us note that, λ sym = s 1 − s M Y l= 1 s 1 − s P {ξ l = 0} + P{ξ l ≥ 2} + P{ξ l = 1} 1 − s s . Expanding the r.h.s. of this equation and using the definition of E ′ m ,n , we get 44 which concludes the proof of the lemma. We have already noticed that A j = 0 whenever j ≥ M. In fact, if some cookies have strength 0, the lower bound on j can be improved. Let M denote the number of cookies with strength 0: M def = ♯{1 ≤ i ≤ M, p i = 0}. Lemma 7.5. Let C = p 1 , . . . , p M ; q be a cookie environment with p M 6= 0. We have, A j = 0 for all j ≥ M − M . Proof. Since M cookies have strength 0, there are at most M − M terms equal to 1 in the sequence ξ 1 , . . . , ξ M . Keeping in mind the definitions of E m ,n and E ′ m ,n , we see that P {E m ,n } = P{E ′ m ,n } = 0 for n M − M . Moreover, recall that p M 6= 0. Thus, if exactly M − M terms are equal to 1, the last one, ξ M , must also be equal to 1. Therefore, we have P {E m ,M −M } = 0. Let us now fix j ≥ M − M , and look at the expression of A j. A j def = M − j X i= 1 P {E i , j }  s 1 − s ‹ i −1 − M X n= j+ 1 M −n X m= P {E ′ m ,n }  s 1 − s ‹ j+m −n . The terms in the first sum P M − j i= 1 are all zero since j ≥ M − M . Similarly, all the terms in the sum P M −n m= are also zero since n ≥ j + 1 M − M . 1663 Proposition 7.6. Let C = p 1 , . . . , p M ; q be a cookie environment such that q b b + 1 and M ≥ M 2 . If M is an odd integer, assume further that p M 6= 0. Then, the spectral radius λ K of the infinite irreducible sub-matrix P K = pi, j i , j≥l K is equal to λ sym . Proof. Let us note that, when M is an even integer and p M = 0, we can consider C as the M + 1 cookie environment p 1 , . . . , p M , q ; q and this M + 1 cookie environment still possesses, at least, half of its cookies with zero strength because ⌊M + 12⌋ = ⌊M2⌋. Thus, we can assume, without loss of generality that the cookie environment is such that p M 6= 0. In order to prove the proposition, we shall prove that Y def =  s 1 − s ‹ i −1 i ≥l K is a left eigenvector of P K for the eigenvalue λ sym fulfilling the assumptions of Proposition 7.1. Since the cookie environment has M ≥ ⌊M2⌋ cookies with strength 0, there are, in the 2⌊M2⌋ first cookies, at most ⌊M2⌋ random variables taking value 1 in the sequence ξ i i ≥1 before the ⌊M2⌋ th failure i.e. pi , j = 0 for i ≤ ⌊M2⌋ j. 45 This implies, in particular, that l K ≥ ⌊M2⌋ + 1 ≥ M − M . Using Lemma 7.5, we deduce that A j = for all j ≥ l k . 46 Combining 46 and Lemma 7.4, we conclude that Y is indeed a left eigenvector: t Y P K = λ sym t Y . Let ǫ 0. We consider the sub-vector Y N def =  s 1 − s ‹ i −1 l K ≤il K +N . It remains to show that, for N large enough, t Y N P K ,N ≥ λ K − ǫ t Y N i.e. l K +N −1 X i=l K pi , j  s 1 − s ‹ i −1 ≥ λ K − ǫ  s 1 − s ‹ j −1 for all j ∈ {l K , . . . , l K + N − 1}. 47 Keeping in mind that, for j ≥ l K ∞ X i=l K pi , j  s 1 − s ‹ i −1 = λ K  s 1 − s ‹ j −1 , we see that 47 is equivalent to proving that, ∞ X i=l K +N pi , j  s 1 − s ‹ i −1 ≤ ǫ  s 1 − s ‹ j −1 for j ∈ {l K , . . . , l K + N − 1}. 48 1664 Choosing N such that l K + N ≥ M + 1, and using the expression of pi, j stated in Lemma 7.3, we get, for any j ∈ {l K , . . . , l K + N − 1}, ∞ X i=l K +N pi , j  s 1−s ‹ i −1 = X 0≤n≤ j 0≤m≤M P {E ′ m ,n } ∞ X i=l K +N j+i−m−n−1 j −n s j+i −1−n 1 − s 1−m where we used that P{E ′ m ,n } = P{E m ,n } = 0 when either n or m is strictly larger than M. We now write j + i − m − n − 1 j − n s j+i −1−n 1 − s 1−m =  s 1 − s ‹ j+m −n j + i − m − n − 1 i − m − 1 s i −m−1 1 − s j −n+1 and we interpret the term j + i − m − n − 1 i − m − 1 s i −m−1 1 − s j −n+1 as the probability of having i − m − 1 successes before having j − n + 1 failures in a sequence B r r ≥1 of i.i.d. Bernoulli random variables with distribution P{B r = 1} = 1 − P{B r = 0} = s. Therefore, we deduce that ∞ X i=l K +N j + i − m − n − 1 i − m − 1 s i −m−1 1 − s j −n+1 = P there are at least l K +N−m−1 successes before the j−n+1 th failure in B r r ≥1 ≤ P there are at least l K +N−M−1 successes before the l K +N+1 th failure in B r r ≥1 . Noticing that s 12 since q bb+1, the law of large numbers for the biased Bernoulli sequence B r r ≥1 implies that the above probability converges to 0 as N tends to infinity. Thus, for all ǫ 0, we can find N ≥ 1 such that 48 holds.

7.2 Proofs of Theorem 1.4 and Proposition 1.8

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52