Proof of positive recurrence

5.2 Proof of positive recurrence

Proposition 5.4. Assume that the cookie environment C = p 1 , . . . , p M ; q is such that q b b + 1 and λ 1 b . Then, all the return times of the walk to the root of the tree have finite expectation. Proof. Let σ i denote the time of the i th crossing of the edge joining the root of the tree to itself for the cookie random walk: σ i def = inf n n 0, n X j= 1 1 {X j =X j −1 =o} = i o . We prove that E[σ i ] ∞ for all i. Recalling the construction of the branching Markov chain L in section 3.1 and the definition of Z, we have E[ σ i ] = i + 2E i h X x ∈T\{o} ℓx i = i + 2 ∞ X n= 1 b n E i [Z n ]. Let us for the time being admit that lim sup n →∞ P i {Z n 0} 1n ≤ λ for any i. 20 Then, using Hölder’s inequality and b of Lemma 4.6, choosing α, β, ˜ λ such that ˜ λ λ, b ˜ λ 1α 1 and 1 α + 1 β = 1, we get ∞ X n= 1 b n E i [Z n ] ≤ ∞ X n= 1 b n P i {Z n 0} 1α E i [Z β n ] 1β ≤ C β ∞ X n= 1 b ˜ λ 1α n ∞. It remains to prove 20. Recall that {0}, [l 1 , r 1 ], . . . , [l k , ∞ denote the irreducible classes of P and that Z can only move from a class [l k , r k ] to another class [l k ′ , r k ′ ] with k ′ k. Thus, for i ∈ [l k , r k ], we have P i {Z n ≥ l k } = P i {Z n ∈ [l k , r k ]} = r k X j=l k P i {Z n = j} = r k X j=l k p n i, j. For k K, the sum above is taken over a finite set. Recalling the definition of λ k , we get lim n →∞ P i {Z n ≥ l k } 1n = λ k for all i ∈ [l k , r k ]. Using the Markov property of Z, we conclude by induction that, for any i l K , lim sup n →∞ P i {Z n 0} 1n ≤ maxλ 1 , . . . , λ K −1 ≤ λ. 21 It remains to prove the result for i ≥ l K . In view of 21 and using the Markov property of Z, it is sufficient to show that, for i ≥ l K , lim sup n →∞ P i {Z n ≥ l K } 1n ≤ λ K . 22 1649 Let us fix i ≥ l K . We write P i {Z n ≥ l K } = P i {∃m ≥ n, Z m = l K } + ∞ X j=l K P i {Z n = j}P j {∄m ≥ 0, Z m = l K }. According to lemma 4.7, there exists c 0 such that, for all j ≥ l K , P j {∄m ≥ 0, Z m = l K } ≤ 1 − c. Therefore, we deduce that P i {Z n ≥ l K } ≤ 1 c P i {∃m ≥ n, Z m = l K } ≤ 1 c ∞ X m=n p m i, l K . 23 Moreover, we have lim m →∞ p m i, l K 1m = λ K 1 hence lim n →∞ ‚ ∞ X m=n p m i, l K Œ 1n = λ K . 24 The combination of 23 and 24 yields 22 which completes the proof of the proposition.

5.3 Proof of transience when

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52