for any n ≥ P{ξ

• i → j if p n i, j 0 for some n ≥ 1. • i ↔ j if i → j and j → i. Lemma 4.1. For any i , j ∈ N, we have a If pi, j 0 then pi, k 0 for all k ≤ j and pk, j 0 for all k ≥ i. b If i → j then i → k for all k ≤ j and k → j for all k ≥ i. Proof. Recall the specific form of the coefficients of P: pi, j is the probability of having j times 1 in the sequence ξ n n ≥1 before the i th failure. Let us also note that we can always transform a realization of ξ n n ≥1 contributing to pi, j into a realization contributing to pi, k for k ≤ j resp. for pk, j for k ≥ i by inserting additional failures in the sequence. Since no cookie has strength 1, for any n ≥ 1, P{ξ n = 0} 0. Therefore, adding a finite number of failures still yields, when pi , j 0, a positive probability for these new realizations of the sequence ξ n . This entails a. We have i → j if and only if there exists a path i = n , n 1 , . . . , n m −1 , n m = j such that pn t −1 , n t 0. Using a, we also have, for k ≤ j, pn m −1 , k 0 resp. for k ≥ i, pk, n 1 0. Hence i , n 1 , . . . , n m −1 , k resp. k, n 1 , . . . , n m −1 , j is a path from i to k resp. from k to j. This proves b. Lemma 4.2. Let a ≤ b such that a ↔ b. The finite sub-matrix pi, j a ≤i, j≤b is irreducible. Proof. Let i, j ∈ [a, b]. In view of b of Lemma 4.1, a → b implies i → b and a → j. Therefore i → b → a → j so that i → j. Thus, there exists a path in N: i = n , n 1 , . . . , n m = j 6 such that pn t −1 , n t 0 for all t. It remains to show that this path may be chosen in [a, b]. We separate the two cases i ≤ j and i j. Case i ≤ j. In this case, the path 6 from i to j may be chosen non decreasing i.e. n t −1 ≤ n t . Indeed, if there exists 0 t m such that n t −1 n t , then, according to a of Lemma 4.1, pn t , n t+ 1 0 implies that pn t −1 , n t+ 1 0. Therefore, n t can be removed from the path. Concerning the last index, note that, if n m −1 n m , then we can remove n m −1 from the path since pn m −2 , n m 0. Case i j. According to the previous case, there exists a non decreasing path from i to i. This implies pi, i 0 and therefore pi, j 0 whenever j i. Thus, there exists a path of length 1 from i to j contained in [a, b]. We now define I def = {i ≥ 0, pi, i 0} = {i ≥ 0, i ↔ i}. On I, the relation ↔ is an equivalence relation. In view of the previous lemma, we see that the equivalence classes for this relation must be intervals of N. Note that {0} is always an equivalence class since 0 is absorbent. Moreover, we have already noticed that, for i, j ≥ M + 1, pi, j 0 c.f. 4. Therefore, there is exactly one infinite class of the form [a, ∞ for some a ≤ M + 1. In particular, there are only a finite number of equivalence classes. We summarize these results in the following definition. 1641 Definition 4.3. Let K + 1 be the number of equivalence classes of ↔ on I. We denote by l i 1≤i≤K and r i 1≤i≤K the left resp. right endpoints of the equivalence classes: • The equivalence classes of ↔ on I are {0}, [l 1 , r 1 ], . . . , [l K −1 , r K −1 ], [l K , r K . • 0 l 1 ≤ r 1 l 2 ≤ r 2 . . . ≤ r K −1 l K r K = ∞. • We have l K ≤ M + 1. We denote by P k , 1 ≤ k ≤ K the sub-matrices of P defined by P k def = pi, j l k ≤i, j≤r k . By construction, the P k are irreducible sub-stochastic matrices and P has the form P =                                                   1 . . . . . . . . . . . . . . . ∗ . . . . . . . . . . . . ∗ . . . . . . . . . . . . . . . P 1 . . . . . . . . . . . . . . . . . . . . . . . . ∗ . . . . . . . . . . . . ∗ . . . P 2 . . . . . . . . . . . . . . . . . . . . . . . . ∗ . . . ∗ . . . . . . . . . . . . . . . ∗ P K infinite class                                                   . Remark 4.4. The sequences l i 1≤i≤K and r i 1≤i≤K−1 can be explicitly expressed in terms of the positions of the zeros in the vector p 1 , . . . , p M . By construction, we have {l i , 1 ≤ i ≤ K} = {n ≥ 1, pn, n 0 and pn − 1, n = 0} {r i , 1 ≤ i ≤ K − 1} = {n ≥ 1, pn, n 0 and pn, n + 1 = 0}, which we may rewrite in terms of the cookie vector: {l i , 1 ≤ i ≤ K} = {n ≥ 1, ♯{1 ≤ j ≤ 2n − 1, p j = 0} = n − 1 and p 2n−1 6= 0} {r i , 1 ≤ i ≤ K − 1} = {n ≥ 1, ♯{1 ≤ j ≤ 2n − 1, p j = 0} = n − 1 and p 2n = 0}. For example, if there is no cookie with strength 0, then K = 1 and l 1 = 1. Conversely, if all the p i ’s have strength 0 the digging random walk case, then K = 1 and l 1 = M + 1.

4.2 The process Z

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52