Spesifikasi Hipotesis : Hipotesis Nol dan Hipotesis Alternatif

Walaupun para peneliti selalu tertarik untuk mempelajari apakah teori yang dipertanyakan hipotesis didukung oleh estimasi-estimasi yang dihasilkan dari sebuah sampel yang berasal dari pengamatan-pengamatan alam nyata, nampaknya hampir tidak mungkin untuk membuktikan bahwa suatu hipotesis tertentu adalah benar. Semua yang dapat dilakukan menyatakan bahwa suatu sampel tertentu cocok atau sesuai dengan hipotesis tertentu. Walaupun hal tersebut tidak dapat membuktikan bahwa suatu teori tertentu adalah “benar” dengan menggunakan uji hipotesis dengan suatu tingkat keyakinan tertentu. Dalam kasus seperti ini, peneliti menyimpulkan bahwa sangatlah tidak mungkin hasil sampel akan teramati, jika teori yang dihipotesiskan adalah benar. Jika terdapat bukti yang tidak sesuai dengan validitas teori, pertanyaan itu sering disimpan sampai data tambahan atau suatu pendekatan baru memberikan jalan terang bagi persoalan itu. Ada tiga topik yang sangat penting untuk dibicarakan dalam aplikasi pengujian hipotesis pada analisis regresi : 1. Spesifikasi hipotesis yang harus diujikan 2. Keputusan yang digunakan untuk menentukan apakah menolak hipotesis yang dipertanyakan 3. Macam kesalahan yang mungkin dihadapi jika aplikasi keputusan menghasilkan kesimpulan yang tidak benar.

2.5 Spesifikasi Hipotesis : Hipotesis Nol dan Hipotesis Alternatif

Tahap pertama dalam pengujian hipotesis adalah menyatakan secara eksplisit hipotesis yang akan diuji. Untuk menjaga rasa kejujuran, peneliti seharusnya menyatakan spesifikasi hipotesis tersebut sebelum parameter dalam hipotesis itu diestimasi. Maksud mempelajari teori lebih dahulu adalah untuk memudahkan Universitas Sumatera Utara hipotesis dengan dasar teori selengkap mungkin. Hipotesis yang disusun setelah estimasi adalah pembenaran hasil-hasil tertentu daripada menguji validatasinya. Akibatnya, sebagian besar ahli statistik inferensi harus hati-hati dalam menyusun hipotesis sebelum estimasi. Dalam menyusun sebuah hipotesis, peneliti harus menyatakan secara hati-hati tentang apa yang dipikir tidak benar dan apa yang dipikir benar. Ini mencerminkan harapan-harapan peneliti tentang suatu parameter atau parameter-parameter tertentu diringkas dalam bentuk hipotesis nol dan hipotesis alternatif. Hipotesis nol adalah suatu pernyataan tertentu tentang nilai-nilai dalam suatu range dari parameter yang akan diharapkan terjadi apabila teori yang dimiliki peneliti tidak benar. Sedangkan Hipotesis alternatif digunakan untuk menspesifikasi nilai-nilai dalam suatu range dari parameter yang diharapkan terjadi apabila pernyataan teori oleh peneliti adalah benar. Kata nol berarti “kosong” dan hipotesis nol dapat dipertimbangkan sebagai hipotesis yang mana peneliti tidak dipercaya. Dalam membangun hipotesis nol dan hipotesis alternatif dengan cara seperti ini supaya dapat menyusun pernyataan yang kuat apabila menolak hipotesis nol. Ini hanya terjadi apabila didefinisikan hipotesis nol dengan beranggapan bahwa hal tersebut tidak mengharapkan dapat membatasi probabilitas menolak secara kebetulan hipotesis nol apabila faktanya memang benar. Pernyataan sebaliknya tidak berlaku, yaitu bahwa sesungguhnya hal tersebut tidak pernah mengetahui probabilitas menerima secara kebetulan hipotesis nol apabila faktanya salah. Konsekuensinya, hal tersebut tidak pernah dikatakan bahwa menerima Universitas Sumatera Utara hipotesis nol. Dapat dikatakan bahwa tidak dapat menolak hipotesis nol atau meletakkan kata menerima dalam permasalahan. Dalam statistik inferensi, hipotesis biasanya tidak menspesifikasi nilai-nilai tertentu, namun menyatakan suatu arah atau tanda tertentu yang mana peneliti mengharapkan statistik hasil estimasi itu akan diperoleh. Dapat dinyatakan hipotesis suatu parameter tertentu akan positif atau negatif. Dalam kasus-kasus semacam itu hipotesis nol menunjukkan bahwa apa yang diharapkan tidak terjadi, namun harapan itu merupakan suatu range nilai hipotesis yang sama dalam suatu range untuk hipotesis alternatif. Notasi yang digunakan untuk menunjukkan suatu hipotesis nol adalah “H ” dan notasi ini diikuti oleh suatu pernyataan nilai atau range nilai-nilai yang tidak diharapkan sebagai parameter yang akan diperoleh. Apabila kita mengharapkan suatu parameter yang negatif maka hipotesis nol yang benar adalah H : μ 0 nilai yang tidak diharapkan Hipotesis alternatif dinyatakan oleh “H 1 ” diikuti oleh parameter nilai atau nilai-nilai yang diharapkan teramati : H 1 : μ 0 nilai yang diharapkan benar Cara lain untuk menyatakan hipotesis nol dan hipotesis alternatif adalah menguji hipotesis bahwa μ adalah tidak berbeda secara signifikan dari nol untuk masing-masing arah. Untuk pendekatan seperti ini hipotesis nol ditulis : Universitas Sumatera Utara H : μ = 0 H 1 : μ 0 Oleh karena H 1 memiliki nilai-nilai pada kedua arah dari hipotesis nol, maka pendekatan ini disebut uji dua-arah untuk membedakan dengan contoh yang pertama, yaitu uji satu-arah

2.6. Tipe Kesalahan I dan Kesalahan II