43
Dimana : Y
t
= vektor yang berisi n dari masing-masing variabel dalam VAR A
o
= vektor intersept  nx1 A
i
= koefisien matrik nxn ɛ
t
= error term nx1
3.5.5. Impulse Response Function IRF
Impulse Response merupakan salah  satu analisis penting di dalam model VARVECM. Analisis impulse response ini melacak respon dari variabel endogen
di dalam sistem VARVECM  karena adanya guncangan shock atau perubahan di dalam variabel gangguan e. impulse response dalam  penelitian ini dilakukan
untuk mengetahui respon dinamika IHK pada transmisi kebijakan moneter konvensional maupun syariah terhadap guncangan variabel SBI, PUAB, LOAN,
SBMK dari sisi konvensional dan guncangan variabel SBIS, PUAS,FINC dan IHMK dari sisi syariah.
3.5.6. Forecasting Error Variance Decomposition FEVD
Selain impulse response dalam model VARVECM juga menyediakan analisis  Forecasting Error Variance Decomposition  atau sering disebut dengan
variance decomposition. Dalam variance decomposition dapat dilihat relatif pentingnya setiap variabel didalam sistem VARVECM  karena adanya shock.
Variance decomposition berguna untuk memprediksi kontribusi persentase varian setiap variabel karena adanya perubahan variabel tertentu di dalam sistem
VARVECM.
Universitas Sumatera Utara
44
3.5.7. Analisis Kausalitas Granger Granger Causality Analysis
Dalam analisis ekonomi, hubungan sebab akibat antara variabel tidak hanya berjalan satu arah. Maka melalui uji kausalitas granger pada intinya dapat
mengindikasikan apakah suatu variabel mempunyai hubungan dua arah atau hanya satu arah saja. Dalam analisis regresi, walaupun kita telah membuat
pengaruh satu variabel terhadap variabel lainnya, namun tidak dijelaskan arah hubungan dari variabel tersebut. Dengan kata lain, ekstensi dari hubungan antara
variabel tidak menunjukan kausalitas atau arah hubungan. Uji Kausalitas umumnya menggunakan uji yang dikembangkan oleh Genger, dengan metode
Granger Causality Test. Model persamaan yang dapat dibentuk dari keadaan di atas adalah :
Trans.Mon.Ganda
t
= ∑ �
� �
�=1
Inf
t-i
+ ∑
ß
� �
� =1
Trans.Mon.Ganda
t-j
+ µ
1t
.....   3.18
Inf
t
= ∑
θ
� �
�=1
Inf
t-i
+ ∑
γ
� �
� =1
Trans.Mon.Ganda
t-j
+ µ
2t
...............   3.19
Dari kedua persamaan tersebut, kita dapat membedakan 4 keadaan hubungan, yakni :
1 Apabila terdapat kausalitas searah antara  Inflasi dengan Transmisi
Moneter Ganda. Jika
Σß
�
≠ 0 dan  Σ γ
�
= 0, 2
Apabila terdapat kausalitas searah antara Transmisi Moneter Ganda dengan Inflasi
Jika Σ
γ
�
≠ 0 dan Σß
�
= 0,
Universitas Sumatera Utara
45
3 Apabila terdapat kausalitas bilateral dua arah antara Transmisi Moneter
Ganda dengan Inflasi Jika
Σ γ
�
≠ 0 dan Σß
�
≠ 0, 4
Apabila Transmisi Moneter Ganda dengan Inflasi tidak saling berhubungan independen
Jika Σ
γ
�
= 0 dan Σß
�
= 0, Untuk mempertegas model kausalitas diatas maka dapat dilakukan F-Test
untuk masing-masing regresi. Untuk menguji hipotesis, digunakan uji F sebagai berikut :
� =
���
�
− ���
��
� ���
��
�−�
............................... 3.20
Dimana : m  =   jumlah lag
k   =   jumlah parameter yang diestimasi dalam unrestricted regression Jika nilai F
hitung
F
tabel
,maka Transmisi Kebijakan moneter Ganda mempunyai hubungan kesinambungan terhadap tingkat inflasi  di Indonesia.
Begitu pula sebaliknya, jika nilai F
hitung
F
tabel
,maka Transmisi kebijakan Moneter Ganda   tidak mempunyai hubungan kesinambungan terhadap tingkat
inflasi di Indonesia. Dalam penulisan skripsi ini, pengolahan data dilakukan dengan
menggunakan program’ Eviews 6.
Universitas Sumatera Utara
46 stasioner                                tidak stasione
r
tidak
Gambar 3.1. Proses Pembentukan Analisis VAR
Data Time Series
Unit Root Test Stasioner di Deferensi
Data First Difference
Stasioner Pada Level
Uji Kointegrasi VAR Pada Level
VAR Pada First Difference
Terjadi Kointegrasi VECM
Granger Causality Data Time Series di
logkan
Universitas Sumatera Utara
47
BAB IV HASIL PENELITIAN DAN PEMBAHASAN