Tanaman Sirih Hutan Piper aduncum L Isolasi Minyak Atsiri Dengan Destilasi

Efek-efek yang terlihat adalah mati, sakit, perubahan perilaku, pertumbuhan, metabolisme, atau kapasitas reproduksinya. Misalnya : a. Racun-racun perut masuk kedalam perut serangga hama melalui mulut, diabsorpsi ke dalam tubuh melalui saluran pencernaan b. Racun kontak pada umumnya masuk kedalam tubuh hama melalui kontak tubuh serangga dengan permukaan daun yang mengandung racun tersebut. Racun-racun ini merusak sistem saraf dan pernapasan hama. c. Fumigan, mudah sekali menguap dan masuk kedalam tubuh serangga hama dalam bentuk gas melalui sistem pernapasan. d. Racun sistemik diaplikasikan pada daun, batang, buah-buahan atau akar diabsorpsi oleh tanaman. Didalam tubuh tanaman racun tersebut bergerak melalui sitem vascular menuju bagian-bagian yang tidak terkena perlakuan racun itu. Selama hama memakan racun itu juga akan ikut termakan. Racun sistemik itu juga dipergunakan untuk mengendalikan hama-hama ternak. e. Racun penyebab mati lemas suffocation adalah racun yang menyumbat saluran pernapasan, biasanya senyawa yang mengandung minyak. Karena tidak dapat bernafas maka hama tersebut mati Oka dan Ida Nyoman, 1993.

2.2. Tanaman Sirih Hutan Piper aduncum L

Berdasarkan taksonomi tanaman, Klasifikasi daun sesirihanhasil identifikasi tumbuhan dilaboratorium Herbarium Medanense MEDA Universitas Sumatera Utara adalah sebagai berikut : Kerajaan : Plantae Divisi : Spermatophyta Kelas : Dicotyledonae Bangsa : Piperales Familia : Piperaceae Genus : Piper Spesies : Piper aduncum L Gambar 2.1 Foto Tanaman sirih hutan Piper aduncum L Nama daerah : Below-below Karo, Sirih Hutan, Sesirihan, Kiseriuheun Sunda. Habitat tanaman ini di areal perkebunan, hutan alami, berkayu, ujung runcing, pangkal membulat, tepi rata pada setiap buku, tangkai berbulu halus, silindris 5-10 mm, panjang daun 10-14 cm, lebar 5-6 cm, pertulangan menjari, hijau muda. Bunga majemuk, bentuk buli, berkelamin satu atau dua, daun pelindung bertangkai 0,5-1,25 mm, melengkung, tangkai benang sari pendek, kepala sari kecil, bakal buah duduk, kepala putik dua sampai tiga, pendek, putih, putih kekuningan. Buah buni, bertangkai pendek, panjang bulir 12-14 cm, masih muda kuning kehijauan, setelah tua hijau. Biji kecil dan berwarna coklat. Akar tunggang, putih kecoklatan.

2.3. Minyak Atsiri

Minyak atsiri adalah salah satu kandungan tanaman yang sering disebut minyak terbang, dinamakan demikian karena minyak tersebut mudah menguap. Selain itu, minyak atsiri juga disebut essential oil dari kata essence karena minyak tersebut memberikan bau pada tanaman Koensoemardiyah, 2010. Minyak atsiri bukan merupakan senyawa tunggal, tetapi tersusun dari berbagai komponen kimia, seperti senyawa – senyawa monoterpen Gunawan, 1991. Minyak atsiri dibagi 2 kelompok, yaitu: 1. Minyak atsiri yang dengan mudah dapat dipisahkan menjadi komponen- komponen atau penyusun murninya, komponen ini dapat menjadi bahan dasar untuk diproses menjadi produk - produk lain. Contohnya: minyak sereh, minyak terpentin. 2. Minyak atsiri yang sukar dipisahkan menjadi komponen murni. Contohnya minyak nilam, minyak kenanga. Minyak atsiri dari tanaman menghasilkan aroma yang berbeda, bahkan 1 jenis tumbuhaan yang sama bila ditanam ditempat yang berlainan mampu menghasilkan aroma yang berbeda, iklim, keberadaan tanah, dan sinar matahari. Cara pengolahan tidak hanya mempengharui rendeman minyak atsiri tetapi berpengaruh pula pada aromanya Harris, 1987.

2.3.1. Komponen Kimia Minyak Atsiri

Pada umumnya perbedaan komposisi minyak atsiri disebabkan perbedaan jenis tanaman penghasil, kondisi iklim, tanah tempat tumbuh, umur panenan, metode ekstraksi yang digunakan dan cara penyimpanan minyak. Minyak atsiri biasanya terdiri dari berbagai campuran persenyawaan kimia yang terbentuk dari unsur Karbon C, Hidrogen H, dan Oksigen O. Pada umumnya komponen kimia minyak atsiri dibagi menjadi dua golongan, yaitu: 1. Golongan hidrokarbon yang terdiri dari persenyawaan Terpen Persenyawaan yang termasuk golongan ini terbentuk dari unsur Karbon C, dan Hidrogen H. Jenis Hidrokarbon yang terdapat dalam minyak atsiri sebagian besar terdiri dari monoterpen 2 unit isopren, dan politerpen. 2. Golongan hidrokarbon teroksigenasi Komponen kimia dari golongan ini terbentuk dari unsur Karbon C, Hidrogen H, dan Oksigen O. Persenyawaan yang termasuk dari golongan ini adalah persenyawaan alkohol, aldehid, ester, fenol. Ikatan karbon yang terdapat dalam molekulnya dapat terdiri dari ikatan tunggal, dan ikatan rangkap dua dan ikatan rangkap tiga. Terpen mengandung ikatan tunggal dan ikatan rangkap dua. Senyawa terpen memiliki aroma kurang wangi, sukar larut dalam alkohol encer dan jika disimpan dalam waktu lama akan terbentuk resin. Golongan hidrokarbon teroksigenasi merupakan senyawa yang penting dalam minyak atsiri karena umumnya aroma yang lebih wangi. Fraksi terpen perlu dipisahkan untuk tujuan tertentu, misalnya untuk pembuatan parfum, sehingga didapatkan minyak atsiri yang bebas terpen Ketaren, 1985.Pada minyak atsiri yang bagian utamanya terpenoid, biasanya terpenoid itu terdapat pada fraksi minyak atsiri yang tersuling uap. Zat inilah penyebab wangi, harum atau bau yang khas pada banyak tumbuhan Harborne, 1987.

2.3.2. Biosintesa pembentukan Minyak Atsiri

Berdasarkan proses biosintesisnya atau pembentukan komponen minyak atsiri di dalam tumbuhan, minyak atsiri dapat dibedakan menjadi dua golongan. Golongan pertama adalah turunan terpen yang terbentuk dari asam asetat melalui jalur biosintesis asam mevalonat. Golongan kedua adalah senyawa aromatik yang terbentuk dari biosintesis asam sikimat melalui jalur fenil propanoid Agusta, 2000. Mekanisme dari tahap tahap reaksi biosintesis terpenoid yaitu asam asetat yang telah diaktifkan oleh koenzim A melalui kondensasi jenis Claisen menghasilkan asam asetoasetat. Senyawa yang dihasilkan ini dengan koenzim a melakukan kondensasi sejenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevalonat. Reaksi-reaksi berikutnya ialah fosforilasi, eliminasi asam fosfat dan dekarboksilasi menghasilkan IPP Isopentenil Pirofosfat oleh enzim isomerase, IPP sebagi unit isopren aktif bergabung secara kepala ke ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerasi isopren untuk menghasilkan terpenoid. Penggabungan ini terjadi karena serangan elektron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan elektron diikuti oleh penyingkiran ion Pirofosfat. Serangan ini menghasilkan geranil pirofosfat GPP yakni senyawa antara bagi semua senyawa monoterpen. Penggabungan selanjutnya antara satu unit IPP dan GPP, dengan mekanisme yang sama seperti anatara IPP dan DMAPP menghasilkan Farnesil Pirofosfat FPP yang merupakan senyawa antara bagi semua senyawa seskuiterpen. Senyawa-senyawa diterpen diturunkan dari geranil-geranil pirofosfat GGPP yang berasal dari kondensasi antara satu unit IPP dan FPP dengan mekanisme yang sama. Sintesa terpenoid sangat sederhana sifatnya. Ditinjau dari segi teori reaksi organik sintesa ini hanya menggunakan beberapa jenis reaksi dasar. Reaksi-reaksi selanjutnya dari senyawa antara GPP, FPP, GGPP untuk menghasilkan senyawa- senyawa terpenoid satu persatu hanya melibatkan beberapa jenis reaksi sekunder. Reaksi-reaksi sekunder ini lazimnya adalah hidrolisa, siklisasi, oksidasi, reduksi, dan reaksi-reaksi spontan yang dapat berlangsung dengan mudah dalam suasana netral dan pada suhu kamar, seperti isomerasi, dehidrasi, dekarboksilasi, dan sebagainya. Berikut ini adalah gambar biosintesa terpenoid sapat dilihat pada gambar dibawah ini Gambar 2.2 Biosintesa Terpenoid Achmad, 1985. Untuk menjelaskan dapat diambil beberapa contoh monoterpen. Dari segi biogenetik, perubahan geraniol, nerol dan linalool dari yang satu menjadi yang lain berlangsung sebagai akibat reaksi isomerisasi. Ketiga alkohol ini, yang berasal dari hidrolisa geranil pirofosfat GPP dapat menjalani reaksi-reaksi sekunder berikut, misalnya dehidrasi menghasilkan mirsena, oksidasi menjadi sitral dan oksidasi reduksi ATP -ADP menghasilkan sitronelal. Berikut ini adalah contoh perubahan senyawa monoterpen, dapat dilihat pada gambar 2.3 Gambar 2.3 Perubahan Senyawa Monoterpen Achmad, 1985 Senyawa- senyawa seskuiterpen diturunkan dari cis-farnesil pirofosfat dan trans- farnesil pirofosfat melalui reaksi siklisasi dan reaksi sekunder lainnya. Kedua isomer farnesil pirofosfat ini dihasilkan in vivo melalui mekanisme yang sama seperti isomerisasi antara geraniol dan nerol. Perubahan farnesil pirofosfat menjadi seskuiterpen terlihat pada gambar 2.4 Gambar 2.4. Reaksi Biogenetik Beberapa Seskuiterpena Achmad, 1985

2.3.3. Sumber Minyak Atsiri

Minyak atsiri merupakan salah satu akhir proses metabolisme sekunder dalam tanaman tumbuhan. Tumbuhan penghasil minyak atsiri antara lain termasuk family Pinaceae, Labiatae, Compositae, Lauraceae, Myrtaceae, Rutaceae, Piperaceae, Zingiberaceae, Umbelliferae, dan Gramineae. Minyak atsiri terdapat pada setiap bagian tumbuhan yaitu di daun, bunga, batang, kulit, akar, dan rimpang Ketaren, 1985.

2.4. Isolasi Minyak Atsiri Dengan Destilasi

Dalam tanaman minyak atsiri, biasanya proses difusi berlangsung sangat lambat, maka untuk mempercepat proses difusi sebelum melakukan penyulingan terlebih dahulu bahan tanaman harus diperkecil dengan cara dipotong - potong atau digerus. Peristiwa terpenting yang terjadi dalam proses penyulingan dengan metode hidrodestilasi ini adalah terjadinya difusi minyak atsiri dan air panas melalui membran bahan yang disuling, terjadinya hidrolisa terhadap beberapa komponen minyak atsiri dan terjadinya dekomposisi yang disebabkan oleh panas Guenther, 1987. Penyulingan suatu campuran yang berwujud cairan yang tidak saling bercampur, hingga membentuk dua fase atau dua lapisan. Keadaan ini terjadi pada pemisahaan minyak atsiri dengan uap air. Penyulingan dengan uap air sering disebut steam destilasi. Pengertian umum ini memberikan gambaran bahwa penyulingan dapat dilakukan dengan cara mendidihkan bahan tanaman atau minyak atsiri dengan air Sastrohamidjojo, 2004. Beberapa jenis tanaman sumber minyak atsiri perlu dirajang terlebih dahulu sebelum disuling. Hal ini untuk memudahkan proses penguapan minyak yang terdapat didalamnya karena perajangan ini menyebabkan kelenjar minyak dapat selebar mungkin Lutony, 1994. Dalam industri minyak atsiri dikenal 3 macam metode penyulingan, yaitu: 1. Penyulingan air Hidrodestilasi Pada metode ini bahan yang akan disuling berhubungan langsung dengan air mendidih. Bahan yang akan disuling kemungkinan mengapung diatas air atau terendam seluruhnya Sastrohamidjojo, 2004. 2. Penyulingan uap Steam destilasi Penyulingan uap disebut juga penyulingan tak langsung. Didalam proses penyulingan dengan uap ini, uap dialirkan melalui pipa uap berlingkar yang berpori dan berada dibawah bahan tanaman yang akan disuling. Kemudian uap akan bergerak menuju ke bagian atas melalui bahan yang disimpan di atas saringan Lutony, 1994. 3. Penyulingan dengan air dan uap Water and Steam distillation Bahan tanaman yang akan diproses secara penyulingan uap dan air ditempatkan dalam suatu tempat yang bagian bawah dan tengah berlobang-lobang yang ditopang diatas dasar alat penyulingan. Ciri khas model ini yaitu uap selalu dalam keadaan basah, jenuh, dan tidak terlalu panas. Bahan tanaman yang akan disuling hanya berhubungan dengan uap dan tidak dengan air panas Lutony, 1994.

2.5. Analisis Komponen Kimia Minyak Atsiri dengan GC-MS

Dokumen yang terkait

Karakterisasi Simplisia, Isolasi, Dan Analisis Komponen Minyak Atsiri Buah Segar Dan Kering Tumbuhan Attarasa (Litsea cubeba Pers.) Secara GC-MS

15 107 92

Karakterisasi Simplisia, Isolasi dan Analisis Komponen Minyak Atsiri Buah Kemukus (Cubebae fructus) dari Wonosobo dan Padang Sidempuan Secara GC-MS

2 78 87

Isolasi Dan Analisis Komponen Kimia Minyak Atsiri Bunga Kemangi (Ocimum basilicum L) Serta Uji Aktivitas Antioksidan Dan Antibakteri

13 98 105

Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

3 34 80

Cover Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

0 0 12

Abstract Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

0 0 2

Chapter I Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

0 0 4

Chapter II Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

0 0 19

Reference Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

0 1 3

Appendix Analisa Komponen Kimia Minyak Atsiri Dan Uji Pestisida Nabati Hasil Isolasi Daun Sirih Hutan (Piper aduncum L) Pada Larva Lalat Buah (Bactrocela carambolae) Jambu Biji

0 0 14