Identification of the limit

Furthermore, for η 2 0, 0 θ ≤ C 2 and τ N ≤ T a stopping time, for all 1 ≤ j ≤ J, P Z τ N +θ τ N D η N , ω s , L ν N s ϕ j E ds ≥ η 2 ≤ 1 η 2 2 E    Z τ N +θ τ N D η N , ω s , L ν N s ϕ j E ds 2    , ≤ C 2 η 2 2 E   Z τ N +θ τ N D η N , ω s , L ν N s ϕ j E 2 ds   , ≤ C 2 η 2 2 Z T E D η N , ω s , L ν N s ϕ j E 2 ds, ≤ C C 2 η 2 2 Z T E h η N s 2 −3,2α i ds, ≤ C T C 2 η 2 2 A N , cf. 25. And, P  M N τ N +θ ϕ j − M N τ N ϕ j η 2 ‹ ≤ C C 2 η 2 2 1 N N X i= 1 1 + |ω i | 4 α . So, for all j ≥ 1, by definition of C 2 , P  η N , ω τ N +θ ϕ j − η N , ω τ N ϕ j ≥ η 2 ‹ ≤ η 1 A ǫ A N + 1 N N X i= 1 1 + |ω i | 4 α . Consequently, Θ N K ǫ 2 φ 1 , . . . , ϕ J ≥ P A N + 1 N N X i= 1 1 + |ω i | 4 α Aǫ . Letting J → ∞, we get lim sup N Θ N €S J K ǫ 2 ϕ 1 , . . . , ϕ J c Š ≤ ǫ. Eq. 33 is proved.

4.3.3 Identification of the limit

The proof of the fluctuations result will be complete when we identify any possible limit. Proposition 4.13 Identification of the initial value. The random variable ω 7→ L η N , ω converges in law to the random variable ω 7→ L X ω, where for all ω, X ω = Cω + Y , with Y a centered Gaussian process with covariance Γ 1 . Moreover ω 7→ Cω is a Gaussian process with covariance Γ 2 , where Γ 1 and Γ 2 are defined in 8 and 9. Proof. For simplicity, we only identify here the law of D η N , ω , ϕ E for all ϕ. The same proof works for the law of finite-dimensional distributions D η N , ω , ϕ 1 E , . . . , D η N , ω , ϕ p E , p ≥ 1. We write 820 Γ i for Γ i ϕ, ϕ, i = 1, 2. One has: D η N , ω , ϕ E = 1 p N N X i= 1 ‚ ϕξ i , ω i − Z S 1 ϕx, ω i λ dx Œ + 1 p N N X i= 1 ‚Z S 1 ϕx, ω i λ dx − ν , ϕ Œ , =: A N , ω + B N , ω . It is easy to see that B N , ω converges in law to Z 2 ∼ N 0, Γ 2 . Moreover, for P-almost every ω, A N , ω converges in law to Z 1 ∼ N 0, Γ 1 see Billingsley [5], Th. 27.3 p. 362. That means that for all u ∈ R, ψ A N u := E λ e iuA N , ω converges to ψ Y u := e − u2 2Γ1 . But, then, for all F ∈ C b

R, E

F E λ e iu D η N , ω , ϕ E = E h F E λ h e iuA N , ω +B N , ω ii = E h F e iuB N , ω ψ N u i . Since ψ N u converges almost surely to a constant, the limit of the expression above exists Slutsky’s theorem and is equal to E F e iuZ 2 − u2 2Γ1 . Proposition 4.14 Identification of the martingale part. For P-almost every ω, the sequence M N , ω converges in law in C [0, T ], S ′ to a Gaussian process W with covariance defined in 7. Proof. For fixed ω, M N , ω is a sequence of uniformly square-integrable continuous martin- gales cf. Remark 4.7, which is tight in C [0, T ], S ′ . Let W 1 and W 2 be two accumulation points continuous square-integrable martingales which a priori depend on ω and M φN ,ω and M ψN ,ω be two subsequences converging to W 1 and W 2 , respectively. Note that we can suppose that φN ≤ ψN for all N. For all ϕ ∈ S , lim N →∞ ¬ M φN ,ω ϕ , M ψN ,ω ϕ ¶ t = W 1 ϕ , W 2 ϕ t , for all t, and ¬ M φN ,ω ϕ , M ψN ,ω ϕ ¶ t = Z t ¬ ν φN s , ϕ ′ 2 ¶ ds. We now have to identify the limit: we already know that for P-almost every realization of the disorder ω, ν N , ω converges in law to P. But, the latter expression, seen as a function of ν, is continuous. So W 1 ϕ , W 2 ϕ t = R t ¬ P s , ϕ ′ 2 ¶ . So W 1 − W 2 is a continuous square integrable martingale whose Doob-Meyer process is 0. So W 1 = W 2 and is characterized as the Gaussian process with covariance given in 7. The convergence follows. Proof of the independence of W and X . We prove more : the triple Y, C, W is independent. For sake of simplicity, we only consider the case of Y ϕ, Cϕ, W t ϕ for fixed t and ϕ. Let us first recall some notations: let A N , ω , B N , ω and M N , ω t ϕ be the random variables defined in the proof of Proposition 4.13 and 4.14 and let ψ A N u := E e iuA N , ω , ψ B N v := E e i vB N , ω , ψ M N w := E e iw M N , ω t ϕ be their characteristic functions u, v, w ∈ R. We know that, for almost 821 every ω, ψ A N u converges to ψ Y u = e − u2 2Γ1 and that ψ M N w converges to the deterministic function ψ W w := E € e iwW t ϕ Š . But, if ψ C v = E € e iwC Š , then, for all u, v, w ∈ R, using the independence of the Brownian with the initial conditions, E E e iuA N , ω +i vB N , ω +iw M N , ω t ϕ − e i vB N , ω ψ A N uψ M N w = 0. Using Slutsky’s theorem, we see that any limit couple Y, C, W satisfies E € E € e iuY +i vC+iwW t ϕ ŠŠ = ψ Y uψ C vψ W w. which is the desired result. We recall that the limit second order differential operator L s is defined by L s ϕ y, π := 1 2 ϕ ′′ y, π + ϕ ′ y, πb[ y, P s ] + c y, π + P s , ϕ ′ ·, ·b·, y, π . As in Lemma 4.5, we can prove the following: Lemma 4.15. Assume H b ,c . Then for every N , s ≤ T , ω, the operator L s and L ν N s are linear continuous from S to S and L s ϕ 6, α ≤ C ϕ 8, α , L ν N s ϕ 6, α ≤ C ϕ 8, α . We are now in position to prove Theorem 2.10: Proof of Theorem 2.10. Let Θ be an accumulation point of Θ N . Thus, for a certain subsequence which will be also denoted as N for notations purpose, the random variable ω 7→ H N , ω con- verges in law to a random variable H with values in M 1 C [0, T ], S ′ with law Θ. Applying Skorohod’s representation theorem, there exists some probability space Ω 1 , P 1 , F 1 and ran- dom variables defined on Ω 1 , ω 1 7→ H N ω 1 and ω 1 7→ Hω 1 such that H N has the same law as ω 7→ H N , ω , H has the same law as H , and for P 1 -almost every ω 1 ∈ Ω 1 , H N ω 1 converges to H ω 1 in M 1 C [0, T ], S ′ . An easy application of Proposition 4.8 and Borel-Cantelli’s Lemma shows that P 1 -almost surely, E sup t ≤T η ω 1 t −6,α ∞. Then we know from Lemma 4.15 that the integral term R t L ∗ s η ω 1 s ds makes sense as a Bochner’s integral in W −8,α ⊆ S ′ . Let η N , ω 1 with law H N ω 1 ; η N , ω 1 converges in law to some η ω 1 with law H ω 1 . By uniqueness in law convergence, using Propositions 4.13 and 4.14, we see that η ω 1 , W as the same law as X ω 1 , W . For fixed ϕ ∈ S , we define F ϕ from C [0, T ], S ′ into R by F ϕ γ := γ t , ϕ − γ , ϕ − R t γ s , L s ϕ ds. The function F ϕ is continuous and since η N , ω 1 converges in law to η ω 1 , the sequence F ϕ η N , ω 1 converges in law to F ϕ η ω 1 . To prove the theorem, it remains to show that the law of the term R t D η N , ω 1 s , L ν N s ϕ − L s ϕ E ds converges in law to 0. We show that there 822 is convergence in probability: For all ǫ 0, for all A 0, using Proposition 4.8, Lemma 4.15, and Cauchy-Schwarz’s inequality, U N , ǫ := P 1 ‚ E –Z t D η N , ω 1 s , L ν N s − L s ϕ E ds ™ ǫ Œ , = P ‚ E –Z t D η N , ω s , L ν N s − L s ϕ E ds ™ ǫ Œ , ≤ P ‚Z t E η N , ω s 2 −6,α 1 2 E L ν N s − L s ϕ 2 6, α 1 2 ds ǫ Œ , ≤ P ‚ C N ω 1 , . . . , ω N 1 2 Z t E L ν N s − L s ϕ 2 6, α 1 2 ds ǫ Œ cf. Prop 4.8, ≤ P ‚Z t E L ν N s − L s ϕ 2 6, α 1 2 ds ǫ p A Œ + P C N A . Using 4.8, it suffices to prove that, for all ǫ 0, lim sup N →∞ P ‚Z t E L ν N s − L s ϕ 2 6, α 1 2 ds ǫ Œ = 0. 34 Indeed, for every ϕ ∈ S , U N s ϕ y, π := L ν N s − L s ϕ y, π = ϕ ′ y, πb[ y, ν N s ] − b[ y, P s ]. An analogous calculation as in Lemma 4.5 shows that, using Lipschitz assumptions on b, and Propo- sition 4.3: E   sup s ≤t U N s ϕ 2 6, α   ≤ ϕ 2 8, α CN + D N ω 1 , . . . , ω N , with the property that lim A →∞ lim sup N PN D N A = 0. Equation 34 is a direct consequence. Since there is uniqueness in law in 10, Θ is perfectly defined, and thus, unique. The convergence follows. 5 Proofs for the fluctuations of the order parameters We end by the proofs of paragraph 2.3.3.

5.1 Proof of Proposition 2.13

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52