Tightness of the fluctuations process

where G ϕω := R ϕ y, ω i P ω i t d y − P t , ϕ . If we apply the same Hilbertian argument as for S N , ω , we see E T N , ω t 2 −3,2α ≤ 2C N E   N X i= 1 1 + |ω i | 4 α   + C + φ 7→ 1 p N N X i= 1 G φω i 2 −3,2α , 29 It is easy to see that the last term in 29 can be reformulated as B N ω 1 , . . . , ω N , with the property that lim A →∞ lim sup N →∞ PB N A = 0. Combining 24, 26, 28 and 29, Proposition 4.4 is proved.

4.3.2 Tightness of the fluctuations process

Applying Ito’s formula to 11, we obtain, for all ϕ bounded function on S 1 × R, with two bounded derivatives w.r.t. x, for every sequence ω, for all t ≤ T : D η N , ω t , ϕ E = D η N , ω , ϕ E + Z t D η N , ω s , L ν N s ϕ E ds + M N , ω t ϕ, 30 where, for all y ∈ S 1 , π ∈ R, L ν N s ϕ y, π = 1 2 ϕ ′′ y, π + ϕ ′ y, π € b[ y , ν N s ] + c y, π Š + P s , ϕ ′ ·, ·b·, y, π , and M N , ω t ϕ is a real continuous martingale with quadratic variation process ¬ M N , ω ϕ ¶ t = Z t ¬ ν N , ω s , ϕ ′ y, π 2 ¶ ds. Lemma 4.5. For every N , the operator L ν N s defines a linear mapping from S into S and for all ϕ ∈ S , L ν N s ϕ 2 3,2 α ≤ C ϕ 2 6, α . Proof. The terms 1 2 ϕ ′′ y, π and ϕ ′ y, πb[ y, ν N s ] clearly satisfy the lemma. We study the two remaining terms: P s , ϕ ′ b ·, y, π 2 3,2 α = X k 1 +k 2 ≤3 Z S 1 ×R ¬ P s , ϕ ′ ∂ y k1 ∂ π k2 b ·, y, π ¶ 2 1 + |π| 4 α d y d π, ≤ C Z R 1 1 + |π| 4 α d π Z S 1 ×R ϕ ′ y, π 2 P s d y, dπ, ≤ C ϕ 2 C 3, α Z R 1 1 + |π| 4 α d π Z S 1 ×R 1 + |π| α 2 P s d y, dπ, ≤ C ϕ 2 6, α Z R 1 1 + |π| 4 α d π Z R 1 + |π| α 2 µ dπ. 814 And, ϕ ′ y, πc y, π 2 3,2 α = X k 1 +k 2 ≤3 Z S 1 ×R € ∂ y k1 ∂ π k2 ϕ ′ y, πc y, π Š 2 1 + |π| 4 α d y d π. It suffices to estimate, for every differential operator D i = ∂ y ui ∂ π vi , i = 1, 2 with u 1 +u 2 + v 1 + v 2 ≤ 3, the following term: Z S 1 ×R |D 1 ϕ ′ y, πD 2 c y , π| 2 1 + |π| 4 α d y d π ≤ Z S 1 ×R |D 1 ϕ ′ y, π| 2 1 + |π| α 2 |D 2 c y , π| 2 1 + |π| α 2 1 + |π| 4 α d y d π, ≤ C ϕ 2 6, α Z R sup y ∈S 1 |D 2 c y , π| 2 1 + |π| 2 α d π. The result follows from the assumptions made on c. For the tightness criterion used below, we need to ensure that the trajectories of the fluctuations process are almost surely continuous: in that purpose, we need some more precise evaluations than in Prop. 4.4. Proposition 4.6. The process M N , ω t satisfies, for every ω, and for every T 0, E – sup t ≤T M N , ω t 2 −3,2α ™ ≤ C N N X i= 1 € 1 + |ω i | 4 α Š . Remark 4.7. In particular, a consequence of H F µ is that, for P-almost every sequence ω, sup N E – sup t ≤T M N , ω t 2 −3,2α ™ ≤ sup N C N N X i= 1 € 1 + |ω i | 4 α Š ∞. 31 Proof. Let ϕ p p ≥1 a complete orthonormal system in W 3,2 α . For fixed N , by Doob’s inequality, P p ≥1 E h sup t ≤T M N , ω t ϕ p 2 i is bounded by C X p ≥1 E h M N , ω T ϕ p 2 i = C X p ≥1 E   Z T D ν N , ω s , ϕ ′ p y, π 2 E ds   , = 1 N N X i= 1 E   Z T X p ≥1 ϕ ′ p x i ,N s , ω i 2 ds   , = 1 N N X i= 1 E   Z T H x i ,N s , ω i 2 3,2 α ds   , ≤ C N N X i= 1 € 1 + |ω i | 4 α Š , using 21. 815 Proposition 4.8. For every N , every ω, E – sup t ≤T η N , ω t 2 −6,α ™ C N ω 1 , . . . , ω N , 32 with lim A →∞ lim sup N →∞ P C N A = 0. Proof. Let ψ p be a complete orthonormal system in W 6, α of C ∞ function on S 1 × R with compact support. We prove the stronger result: E   X p ≥1 sup t ≤T D η N , ω t , ψ p E 2   ∞. Indeed, D η N , ω t , ψ p E 2 ≤ C ‚ D η N , ω , ψ p E 2 + T Z t D η N , ω s , L ν N s ψ p E 2 ds + M N , ω t ψ p 2 Œ . By Doob’s inequality, E   X p ≥1 sup t ≤T D η N , ω t , ψ p E 2   ≤ C   E η N , ω 2 −6,α + E Z T X p ≥1 D η N , ω s , L ν N s ψ p E 2 ds + X p ≥1 E h M N , ω T ψ p 2 i   . By Lemma 4.5, we have: D η N , ω s , L ν N s ψ E ≤ C η N , ω s −3,2α ψ 6, α . Then, E   Z T X p ≥1 D η N , ω s , L ν N s ψ p E 2 ds   ≤ C 2 Z T E η N , ω s 2 −3,2α ds, ≤ C 2 T sup s ≤T E η N , ω s 2 −3,2α ≤ C 2 TA N , where A N is defined in Proposition 4.4. The result follows. Proposition 4.9. 1. For every N , for P-almost every ω, the trajectories of the fluctuations process η N , ω are almost surely continuous in S ′ , 2. For every N , for P-almost every ω, the trajectories of M N , ω are almost surely continuous in S ′ . 816 Proof. We only prove for M N , ω , since, using Proposition 4.8, the proof is the same for η N , ω . Let ϕ p be a complete orthonormal system in W −3,2α , then for every fixed N and ω, we know from the proof of Proposition 4.6, that for all ǫ 0, there exists some M 0 such that X p ≥M sup t ≤T M N , ω t ϕ p 2 ǫ 3 , a.s. Let t m be a sequence in [0, T ] such that t m → m →∞ t . M N , ω t m − M N , ω t 2 −3,2α = X p ≥1 M N , ω t m − M N , ω t 2 ϕ p , ≤ M X p= 1 M N , ω t m − M N , ω t 2 ϕ p + 2 ǫ 3 ≤ ǫ, if t m is sufficiently large. We are now in position to prove the tightness of the fluctuations process. Let us recall some nota- tions: for fixed N and ω H N , ω is the law of the process η N , ω . Hence, H N , ω is an element of M 1 C [0, T ], S ′ , endowed with the topology of weak convergence and with B ∗ , the smallest σ-algebra such that the evaluations Q 7→ Q , f are measurable, f being measurable and bounded. We will denote by Θ N the law of the random variable ω 7→ H N , ω . The main result of this part is the following: Theorem 4.10. 1. for P-almost every sequence ω, the law of the process M N , ω is tight in M 1 C [0, T ], S ′ , 2. The law of the sequence ω 7→ H N , ω is tight on M 1 M 1 C [0, T ], S ′ . Before proving Theorem 4.10, we recall the following result and notations cf. Mitoma [19], Th 3.1, p. 993: Proposition 4.11 Mitoma’s criterion. Let P N be a sequence of probability measures on C S ′ := C [0, T ], S ′ , B C S ′ . For each ϕ ∈ S , we denote by Π ϕ the mapping of C S ′ to C := C [0, T ], R defined by Π ϕ : ψ· ∈ C S ′ 7→ ψ· , ϕ ∈ C . Then, if for all ϕ ∈ S , the sequence P N Π −1 ϕ is tight in C , the sequence P N is tight in C S ′ . Remark 4.12. A closer look to the proof of Mitoma shows that it suffices to verify the tightness of P N Π −1 ϕ for ϕ in a countable dense subset of the nuclear Fréchet space S , k · k p , p ≥ 1. Thanks to Mitoma’s result, it suffices to have a tightness criterion in R. We recall here the usual result cf. Billingsley [4]: A sequence of Ω N , F N t -adapted processes Y N with paths in C [0, T ], R is tight if both of the following conditions hold: 817 • Condition [T]: for all t ≤ T and δ 0, there exists C 0 such that sup N P € |Y N t | C Š ≤ δ, T t , δ,C • Condition [A]: for all η 1 , η 2 0, there exists C 0 and N such that for all F N -stopping times τ N , sup N ≥N sup θ ≤C P  Y N τ N − Y N τ N +θ ≥ η 2 ‹ ≤ η 1 . A η 1 , η 2 ,C Proof of Theorem 4.10. 1. Tightness of M N , ω : for a fixed realization of the disorder ω, for fixed ϕ ∈ S , we have: • For all t ∈ [0, T ], for all δ 0, for all C 0, P  M N , ω t ϕ C ‹ ≤ E h sup t ≤T n M N , ω t ϕ 2 oi C 2 , ≤ E sup t ≤T M N , ω t 2 −3,2α ϕ 2 3,2 α C 2 , ≤ C ϕ 2 3,2 α a 2 sup N 1 N N X i= 1 € 1 + |ω i | 4 α Š , cf. 31, ≤ δ, for a suitable C 0 depending on ω. Condition [T] is proved. • Let us verify Condition [A]: For every ϕ ∈ S , for every δ, θ , η 1 , η 2 0, θ ≤ δ, for every stopping time τ N , u N := P  M N τ N +θ ϕ − M N τ N ϕ η 2 ‹ ≤ 1 η 2 2 E M N τ N +θ ϕ − M N τ N ϕ 2 , ≤ 1 η 2 2 E   Z τ N +θ τ N ¬ ν N s , ϕ ′ y, π 2 ¶ ds   , ≤ ϕ 2 6, α 1 η 2 2 E   Z τ N +θ τ N Z S 1 ×R H y , π 2 −6,α d ν N s ds   , ≤ ϕ 2 6, α C η 2 2 E   Z τ N +θ τ N 1 N N X i= 1 1 + |ω i | 4 α ds   , cf. 18 and 21, ≤ ϕ 2 6, α C δ η 2 2 sup N 1 N N X i= 1 1 + |ω i | 4 α . This last term is lower or equal than η 1 for δ sufficiently small depending on ω. 2. Tightness of Θ N : we need to be more careful here, since the tightness is in law w.r.t. the disorder . Let ϕ j j ≥1 be a countable family in the nuclear Fréchet space S . Without any 818 restriction, we can always suppose that φ j 6, α = 1, for every j ≥ 1. We define the following decreasing sequences indexed by J ≥ 1 of subsets of M 1 C [0, T ], S ′ : K ǫ 1 ϕ 1 , . . . , ϕ J := n P ; ∀t, ∀1 ≤ j ≤ J, PΠ −1 ϕ j satisfies T t , δ,C 1 o , K ǫ 2 ϕ 1 , . . . , ϕ J := n P ; ∀1 ≤ j ≤ J, ∀η 1 , η 2 0, PΠ −1 ϕ j satisfies A η 1 , η 2 ,C 2 o , where C 1 = C 1 ǫ, δ, C 2 = C 2 ǫ, η 1 , η 2 will be precised later. By construction and by Mitoma’s theorem cf. Remark 4.12, K ǫ := \ J K ǫ 1 ϕ 1 , . . . , ϕ J ∩ K ǫ 2 ϕ 1 , . . . , ϕ J is a relatively compact subset of M 1 C [0, T ], S ′ . In order to prove tightness of Θ N , it is sufficient to prove that, for all ǫ 0, ∀i = 1, 2, lim sup N Θ N [ J K ǫ i φ 1 , . . . , φ J c ≤ ǫ. 33 For ǫ 0, let A = Aǫ such that lim inf N →∞ P A N ≤ A ≥ 1 − ǫ, and lim inf N →∞ P 1 N N X i= 1 1 + |ω i | 4 α + A N ω 1 , . . . , ω N ≤ A ≥ 1 − ǫ, where A N is the random variable defined in Proposition 4.4. We define the corresponding constants for a sufficiently large constant C: C 1 ǫ, δ := r A ǫ δ , C 2 ǫ, η 1 , η 2 := η 1 η 2 2 CA ǫ . Then, Θ N K ǫ 1 φ 1 , . . . , φ J ≥ P      ω, ∀t, ∀1 ≤ j ≤ J, ∀δ, E D η N , ω t , φ j E 2 C 1 δ, ǫ 2 ≤ δ      , ≥ P ‚ ω, sup t ≤T E η N , ω t 2 −6,α ≤ A Œ , by definition of C 1 , ≥ P A N ≤ Aǫ , cf. 18 and 25. Letting J → ∞ in the latter inequality, we obtain: Θ N S J K ǫ 1 φ 1 , . . . , φ J c ≤ PA N A. Taking on both sides lim sup N →∞ , we get the result. 819 Furthermore, for η 2 0, 0 θ ≤ C 2 and τ N ≤ T a stopping time, for all 1 ≤ j ≤ J, P Z τ N +θ τ N D η N , ω s , L ν N s ϕ j E ds ≥ η 2 ≤ 1 η 2 2 E    Z τ N +θ τ N D η N , ω s , L ν N s ϕ j E ds 2    , ≤ C 2 η 2 2 E   Z τ N +θ τ N D η N , ω s , L ν N s ϕ j E 2 ds   , ≤ C 2 η 2 2 Z T E D η N , ω s , L ν N s ϕ j E 2 ds, ≤ C C 2 η 2 2 Z T E h η N s 2 −3,2α i ds, ≤ C T C 2 η 2 2 A N , cf. 25. And, P  M N τ N +θ ϕ j − M N τ N ϕ j η 2 ‹ ≤ C C 2 η 2 2 1 N N X i= 1 1 + |ω i | 4 α . So, for all j ≥ 1, by definition of C 2 , P  η N , ω τ N +θ ϕ j − η N , ω τ N ϕ j ≥ η 2 ‹ ≤ η 1 A ǫ A N + 1 N N X i= 1 1 + |ω i | 4 α . Consequently, Θ N K ǫ 2 φ 1 , . . . , ϕ J ≥ P A N + 1 N N X i= 1 1 + |ω i | 4 α Aǫ . Letting J → ∞, we get lim sup N Θ N €S J K ǫ 2 ϕ 1 , . . . , ϕ J c Š ≤ ǫ. Eq. 33 is proved.

4.3.3 Identification of the limit

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52