Uniqueness of the limit Distribution spaces

3.2 Uniqueness of the limit

Proposition 3.8. There exists a unique element P of D[0, T ], M F S 1 × R which satisfies equation 12, P ∈ M 1 and P 0,2 = µ. Remark 3.9. Since this proof is an adaptation of Oelschläger [20] Lemma 10, p.474, we only sketch the proof: We can rewrite Eq. 12 in a more compact way: P t , f = P , f + Z t P s , LP s f ds, ∀ f ∈ C 2 b S 1 × R, 0 ≤ t ≤ T, 15 where, LP f x , ω := 1 2 f ′′ x, ω + hx, ω, P f ′ x, ω, ∀x ∈ S 1 , ∀ω ∈ R, and, hx , π, P = b[x, P] + cx, π. Let t 7→ P t be any solution of Eq. 15. One can then introduce the following SDE where ξ ∈ R and ˜ ξ ∈ S 1 is its projection on S 1 : ¨ d ξ t = h ˜ ξ t , ω t , P t dt + dW t , ξ = ˜ ξ , ˜ ξ , ω ∼ P , d ω t = 0. 16 Eq. 16 has a unique strong solution ξ t , ω t t ∈[0,T ] = ξ t , ω t ∈[0,T ] . The proof of uniqueness in Eq. 12 consists in two steps: 1. P t = L ˜ ξ t , ω t , for all t ∈ [0, T ], 2. Uniqueness of ˜ ξ. We refer to Oelschläger [20] for the details. Another proof of uniqueness can be found in [9] or in [13] via a martingale argument. 4 Proof of the fluctuations result Now we turn to the proof of Theorem 2.10. To that purpose, we need to introduce some distribution spaces: 809

4.1 Distribution spaces

Let S := S S 1 × R be the usual Schwartz space of rapidly decreasing infinitely differentiable functions. Let D p be the set of all differential operators of the form ∂ u k ∂ π l with k + l ≤ p. We know from Gelfand and Vilenkin [14] p. 82-84, that we can introduce on S a nuclear Fréchet topology by the system of seminorms k · k p , p = 1, 2, . . . , defined by φ 2 p = p X k= Z S 1 ×R 1 + |π| 2 2p X D ∈D k |Dφ y, π| 2 d y d π. Let S ′ be the corresponding dual space of tempered distributions. Although, for the sake of sim- plicity, we will mainly consider η N , ω as a process in C [0, T ], S ′ , we need some more precise estimations to prove tightness and convergence. We need here the following norms: For every integer j, α ∈ R + , we consider the space of all real functions ϕ defined on S 1 × R with derivative up to order j such that ϕ j , α :=    X k 1 +k 2 ≤ j Z S 1 ×R |∂ x k1 ∂ π k2 ϕx, π| 2 1 + |π| 2 α dx d π    1 2 ∞. Let W j , α be the completion of C ∞ c S 1 × R for this norm; W j , α , k · k j , α is a Hilbert space. Let W − j,α be its dual space. Let C j , α be the space of functions ϕ with continuous partial derivatives up to order j such that lim |π|→∞ sup x ∈S 1 |∂ x k1 ∂ π k2 ϕx, π| 1 + |π| α = 0, for all k 1 + k 2 ≤ j, with norm ϕ C j , α = X k 1 +k 2 ≤ j sup x ∈S 1 sup π∈R |∂ x k1 ∂ π k2 ϕx, π| 1 + |π| α . We have the following embeddings: W m+ j , α ,→ C j , α , m 1, j ≥ 0, α ≥ 0, i.e. there exists some constant C such that ϕ C j , α ≤ C ϕ m+ j , α . 17 Moreover, W m+ j , α ,→ W j , α+β , m 1, j ≥ 0, α ≥ 0, β 1. Thus there exists some constant C such that ϕ j , α+β ≤ C ϕ m+ j , α . We then have the following dual continuous embedding: W − j,α+β ,→ W −m+ j,α , m 1, α ≥ 0, β 1. 18 It is quite clear that S ,→ W j , α for any j and α, with a continuous injection. We now prove some continuity of linear mappings in the corresponding spaces: 810 Lemma 4.1. For every x , y ∈ S 1 , ω ∈ R, for all α, the linear mappings W 3, α → R defined by D x , y, ω ϕ := ϕx, ω − ϕ y, ω; D x , ω := ϕx, ω; H x , ω = ϕ ′ x, ω, are continuous and D x , y, ω −3,α ≤ C|x − y| 1 + |ω| α , 19 D x , ω −3,α ≤ C 1 + |ω| α , 20 H x , ω −3,α ≤ C 1 + |ω| α . 21 Proof. Let ϕ be a function of class C ∞ with compact support on S 1 × R, then, |ϕx, ω − ϕ y, ω| ≤ |x − y| sup u ϕ ′ u, ω , ≤ |x − y| 1 + |ω| α sup u , ω ϕ ′ u, ω 1 + |ω| α , ≤ |x − y| 1 + |ω| α ϕ 1, α , ≤ C|x − y| 1 + |ω| α ϕ 3, α , following 17 with j = 1 and m = 2 1. Then, 19 follows from a density argument. 20 and 21 are proved in the same way.

4.2 The non-linear process

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52