Preliminary results Fluctuations in the quenched model

Proposition 4.2. There is pathwise existence and uniqueness for Equation 22. Proof. The proof is the same as given in Sznitman [26], Th 1.1, p.172, up to minor modifications. The main idea consists in using a Picard iteration in the space of probabilities on C [0, T ], S 1 × R endowed with an appropriate Wasserstein metric. We refer to it for details.

4.3 Fluctuations in the quenched model

The key argument of the proof is to explicit the speed of convergence as N → ∞ for the rotators to the non-linear process see Prop. 4.3. A major difference between this work and [12] is that, since in our quenched model, we only integrate w.r.t. oscillators and not w.r.t. the disorder, one has to deal with remaining terms, see Z N in Proposition 4.3, to compare with [12], Lemma 3.2, that would have disappeared in the averaged model . The main technical difficulty of Proposition 4.3 is to control the asymptotic behaviour of such terms, see 24. As in [12], having proved Prop. 4.3, the key argument of the proof is a uniform estimation of the norm of the process η N , ω , see Propositions 4.4 and 4.8, based on the generalized stochastic differential equation verified by η N ω , see 30.

4.3.1 Preliminary results

We consider here a fixed realization of the disorder ω = ω 1 , ω 2 , . . . . On a common filtered probability space Ω, F , F t , B i i ≥1 , Q, endowed with a sequence of i.i.d. F t -adapted Brownian motions B i and with a sequence of i.i.d. F measurable random variables ξ i with law λ, we define as x i ,N the solution of 11, and as x ω i the solution of 22, with the same Brownian motion B i and with the same initial value ξ i . The main technical proposition, from which every norm estimation of η N , ω follows is the following: Proposition 4.3. E – sup t ≤T x i ,N t − x ω i t 2 ™ ≤ CN + Z N ω 1 , . . . , ω N , 23 where the random variable ω 7→ Z N ω is such that: lim A →∞ lim sup N →∞ P N Z N ω A = 0. 24 The rather technical proof of Proposition 4.3 is postponed to the end of the document see §A. Once again, we stress the fact that the term Z N would have disappeared in the averaged model. The first norm estimation of the process η N , ω which will be used to prove tightness is a direct consequence of Proposition 4.3 and of a Hilbertian argument: Proposition 4.4. Under the hypothesis H F µ on µ, the process η N , ω satisfies the following property: for all T 0, sup t ≤T E η N , ω t 2 −3,2α ≤ A N ω 1 , . . . , ω N , 25 812 where lim A →∞ lim sup N →∞ P A N A = 0. Proof. For all ϕ ∈ W 3,2 α , writing D η N , ω t , ϕ E = 1 p N N X i= 1 ¦ ϕx i ,N t , ω i − ϕx ω i t , ω i © + 1 p N N X i= 1 ¦ ϕx ω i t , ω i − P s , ϕ © , =: S N , ω t ϕ + T N , ω t ϕ, we have: D η N , ω t , ϕ E 2 ≤ 2 S N , ω t ϕ 2 + T N , ω t ϕ 2 . 26 But, by convexity, S N , ω t ϕ 2 ≤ N X i= 1 D 2 x i ,N t ,x ωi t , ω i ϕ. Then, applying the latter equation to an orthonormal system ϕ p p ≥1 in the Hilbert space W 3,2 α , summing on p, we have by Parseval’s identity on the continuous functional D x i ,N t ,x ωi t , E S N , ω t 2 −3,2α ≤ E   N X i= 1 D x i ,N t ,x ωi t , ω i 2 −3,2α   , ≤ C N X i= 1 1 + |ω i | 4 α E x i ,N t − x ω i t 2 , 27 ≤ C N X i= 1 € 1 + |ω i | 4 α Š C N + Z N ω 1 , . . . , ω N , 28 where we used 19 in 27, and 23 in 28. On the other hand, E h T N , ω t ϕ 2 i = 1 N E    N X i= 1 ϕx ω i t , ω i − P t , ϕ 2    , = 1 N E   N X i= 1 ϕx ω i t , ω i − P t , ϕ 2   + 1 N E    X i 6= j ϕx ω i t , ω i − P t , ϕ ϕx ω j t , ω j − P t , ϕ    , ≤ 2 N E   N X i= 1 ϕx ω i t , ω i 2 + P t , ϕ 2   + 1 N X i 6= j G ϕω i Gϕω j , ≤ 2 N E   N X i= 1 ϕx ω i t , ω i 2   + 2 P t , ϕ 2 + 1 p N N X i= 1 G ϕω i 2 , 813 where G ϕω := R ϕ y, ω i P ω i t d y − P t , ϕ . If we apply the same Hilbertian argument as for S N , ω , we see E T N , ω t 2 −3,2α ≤ 2C N E   N X i= 1 1 + |ω i | 4 α   + C + φ 7→ 1 p N N X i= 1 G φω i 2 −3,2α , 29 It is easy to see that the last term in 29 can be reformulated as B N ω 1 , . . . , ω N , with the property that lim A →∞ lim sup N →∞ PB N A = 0. Combining 24, 26, 28 and 29, Proposition 4.4 is proved.

4.3.2 Tightness of the fluctuations process

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52