sample mean non-degenerate U-statistics with independent entries

for λ ∈ R. We apply Theorem 2.1 for s = λs n t n and λ 0. The right hand side of the inequality 2.13 converges to zero for large n: 1 s n s 3 dn = λ 3 s 2 n t 3 n dn n →∞ −→ 0 2.15 as assumed in condition 1. Applying 2.13 this leads to the limit Λλ := lim n →∞ 1 s n log E exp λs n f X − E[ f X ] t n = lim n →∞ 1 s n λ 2 s 2 n 2t 2 n V f X = λ 2 2 C , 2.16 where the last equality follows from condition 2. Λ is finite and differentiable. The same calcu- lation is true for − f and consequently 2.16 holds for all λ ∈ R. Hence we are able to apply the Gärtner-Ellis theorem. This proves the moderate deviation principle of f X −E[ f X ] t n n with speed s n and rate function I x = sup λ∈R ¨ λx − λ 2 2 C « = x 2 2C . ƒ 3 Moderate Deviations for Non-degenerate U-statistics In this section we show three applications of Theorem 1.9. We start with the simplest case:

3.1 sample mean

Let X 1 , . . . , X n be independent and identically distributed random variables with values in a compact set [ −r, r], r 0 fix, and positive variance as well as Y 1 , . . . , Y n independent copies. To apply Theorem 1.9 for f X = 1 p n P n m= 1 X m the partial differences of f have to tend to zero fast enough for n to infinity: |∆ i f X n 1 ; Y i | = 1 p n |X i − Y i | ≤ 2r p n 3.17 ∆ i ∆ j f X n 1 ; Y j , Y i = 0 3.18 Let a n be a sequence with lim n →∞ p n a n = 0 and lim n →∞ n a n = ∞. For t n = a n p n and s n = a 2 n n the conditions of Theorem 1.9 are satisfied: 1. s 2 n t 3 n dn ≤ a n p n 4r 2 n n X m= 1 2r 3 p n = a n n 8r 3 3 . Because dn is positive this implies lim n →∞ s 2 n t 3 n dn = 0. 2. s n t 2 n V f X = V 1 p n n X m= 1 X m = VX 1 . 2646 The application of Theorem 1.9 proves the MDP for 1 a n n X m= 1 X m − nEX 1 n with speed s n and rate function Ix = x 2 2VX 1 . This result is well known, see for example [DZ98], Theorem 3.7.1, and references therein. The MDP can be proved under local exponential moment conditions on X 1 : E expλX 1 ∞ for a λ 0. In [Cat03], the bounds of the log-Laplace transformation are obtained under exponential moment conditions. Applying this result, we would be able to obtain the MDP under exponential moment conditions, but this is not the focus of this paper.

3.2 non-degenerate U-statistics with independent entries

Let X 1 , . . . , X n be independent and identically distributed random variables with values in a measur- able space X . For a measurable and symmetric function h : X m → R we define U n h := 1 € n m Š X 1 ≤i 1 ···i m ≤n hX i 1 , . . . , X i m , where symmetric means invariant under all permutation of its arguments. U n h is called a U- statistic with kernel h and degree m. Define the conditional expectation for c = 1, . . . , m by h c x 1 , . . . , x c := E hx 1 , . . . , x c , X c+ 1 , . . . , X m = E hX 1 , . . . , X m X 1 = x 1 , . . . , X c = x c and the variances by σ 2 c := V h c X 1 , . . . , X c . A U-statistic is called non-degenerate if σ 2 1 0. By the Hoeffding-decomposition see for example [Lee90], we know that for every symmetric function h, the U-statistic can be decomposed into a sum of degenerate U-statistics of different orders. In the degenerate case the linear term of this decomposition disappears. Eichelsbacher and Schmock showed the MDP for non-degenerate U-statistics in [ES03]; the proof used the fact that the linear term in the Hoeffding-decomposition is leading in the non-degenerate case. In this article the observed U-statistic is assumed to be of the latter case. We show the MDP for appropriate scaled U-statistics without applying Hoeffding’s decomposition. The scaled U-statistic f := p nU n h with bounded kernel h and degree 2 fulfils the inequality: ∆ k f x n 1 ; y k = 2 p n nn − 1 X 1 ≤i j≤n hx i , x j − X 1 ≤i j≤n i , j 6=k hx i , x j − k −1 X i= 1 hx i , y k − n X j=k+ 1 h y k , x j = 2 p nn − 1    k −1 X i= 1 hx i , x k + n X j=k+ 1 hx k , x j − k −1 X i= 1 hx i , y k − n X j=k+ 1 h y k , x j    ≤ 4 ||h|| ∞ p n 2647 for k = 1, . . . , n. Analogously one can write down all summations of the kernel h for ∆ m ∆ k f x n 1 ; y k , y m . Most terms add up to zero and we get: ∆ m ∆ k f x n 1 ; y k , y m = 2 hx k , x m − h y k , x m − hx k , y m + h y k , y m p nn − 1 ≤ 2 p nn − 1 4 ||h|| ∞ ≤ 16 ||h|| ∞ n 32 . Let a

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52