Let a getdocf31b. 229KB Jun 04 2011 12:05:11 AM

for k = 1, . . . , n. Analogously one can write down all summations of the kernel h for ∆ m ∆ k f x n 1 ; y k , y m . Most terms add up to zero and we get: ∆ m ∆ k f x n 1 ; y k , y m = 2 hx k , x m − h y k , x m − hx k , y m + h y k , y m p nn − 1 ≤ 2 p nn − 1 4 ||h|| ∞ ≤ 16 ||h|| ∞ n 32 . Let a n be a sequence with lim n →∞ p n a n = 0 and lim n →∞ n a n = ∞. The aim is the MDP for a real random variable of the kind n a n U n h and the speed s n := a 2 n n . To apply Theorem 1.9 for f X = p nU n hX , s n as above and t n := a n p n , we obtain 1. s 2 n t 3 n dn ≤ a n p n ‚ 4||h|| 3 ∞ 3 p n + n − 1 n 32 8 ||h|| 3 ∞ Œ . The right hand side converges to 0, because lim n →∞ a n n = 0. 2. s n t 2 n V f X = a 2 n n n a 2 n V p nU n hX n →∞ −→ 4σ 2 1 , see Theorem 3 in [Lee90, chapter 1.3]. The non-degeneracy of U n h implies that 4σ 2 1 0. The application of Theorem 1.9 proves: T HEOREM

3.1. Let a

n n ∈ 0, ∞ N be a sequence with lim n →∞ p n a n = 0 and lim n →∞ n a n = ∞. Then the sequence of non-degenerate and centered U-statistics n a n U n h n with a real-valued, symmetric and bounded kernel function h satisfies the MDP with speed s n := a 2 n n and good rate function I x = sup λ∈R {λx − 2λ 2 σ 2 1 } = x 2 8σ 2 1 . R EMARK 3.2. Theorem 3.1 holds, if the kernel function h depends on i and j, e.g. the U-statistic is of the form 1 € n 2 Š P 1 ≤i j≤n h i , j X i , X j . One can see this in the estimation of ∆ i f X and ∆ i ∆ j f X . This is an improvement of the result in [ES03]. R EMARK 3.3. We considered U-statistics with degree 2. For degree m 2 we get the following estimation for the partial differences of f X := 1 p n € n m Š X 1 ≤i 1 ···i m ≤n hX i 1 , . . . , X i m : ∆ i f X ≤ p n 1 € n m Š n − 1 m − 1 2 ||h|| ∞ = 2m p n ||h|| ∞ ∆ i ∆ j f X ≤ p n 1 € n m Š n − 2 m − 2 4 ||h|| ∞ = 4mm − 1 p nn − 1 ||h|| ∞ and Theorem 1.9 can be applied as before. 2648 Theorem 3.1 is proved in [ES03] in a more general context. Eichelsbacher and Schmock showed the moderate deviation principle for degenerate and non-degenerate U-statistics with a kernel function h , which is bounded or satisfies exponential moment conditions see also [Eic98; Eic01]. Example 1: Consider the sample variance U V n , which is a U-statistic of degree 2 with kernel hx 1 , x 2 = 1 2 x 1 − x 2 2 . Let the random variables X i , i = 1, . . . , n, be restricted to take values in a compact interval. A simple calculation shows σ 2 1 = V h 1 X 1 = 1 4 V X 1 − EX 1 2 = 1 4 € E [X 1 − EX 1 4 ] − VX 1 2 Š . The U-statistic is non-degenerate, if the condition E[X 1 − EX 1 4 ] VX 1 2 is satisfied. Then n a n n−1 P n i= 1 X i − ¯ X 2 n satisfies the MDP with speed a 2 n n and good rate function I V x = x 2 8σ 2 1 = x 2 2 E[X 1 − EX 1 4 ] − VX 1 2 . In the case of independent Bernoulli random variables with PX 1 = 1 = 1 − PX 1 = 0 = p, 0 p 1, U V n is a non-degenerate U-statistic for p 6= 1 2 and the corresponding rate function is given by: I V bernoulli x = x 2 2p1 − p 1 − 4p1 − p . Example 2: The sample second moment is defined by the kernel function hx 1 , x 2 = x 1 x 2 . This leads to σ 2 1 = V h 1 X 1 = V X 1 E X 1 = EX 1 2 V X 1 . The condition σ 2 1 0 is satisfied, if the expectation and the variance of the observed random variables are unequal to zero. The values of the random variables have to be in a compact interval as in the example above. Under this conditions n a n P 1 ≤i j≤n X i X j satisfies the MDP with speed a 2 n n and good rate function I sec x = x 2 8σ 2 1 = x 2 8 EX 1 2 V X 1 . For independent Bernoulli random variables the rate function for all 0 p 1 is: I sec bernoulli x = x 2 8p 3 1 − p . Example 3: Wilcoxon one sample statistic Let X 1 , . . . , X n be real valued, independent and identically distributed random variables with absolute continuous distribution function symmetric in zero. We prove the MDP for -properly rescaled- W n = X 1 ≤i j≤n 1 {X i +X j 0} =  n 2 ‹ U n h defining hx 1 , x 2 := 1 {x 1 +x 2 0} for all x 1 , x 2 ∈ R. Under these assumptions one can calculate σ 2 1 = Cov hX 1 , X 2 , hX 2 , X 3 = 1 12 . Applying Theorem 3.1 as before we proved the MDP for the Wilcoxon one sample statistic 1 n−1a n € W n − 1 2 € n 2 ŠŠ with speed a 2 n n and good rate function I W x = 3 2 x 2 . 2649

3.3 non-degenerate U-statistics with Markovian entries

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52