Bernoulli random matrices Let X = X

We will give a proof of Theorem 1.1 and Theorem 1.3 in the end of section 4. R EMARK 1.4. Let us consider the example of counting triangles: l = k = 3, a = 6. The necessary condition 1.7 of the moderate deviation principle turns to n 2 p 15 −→ ∞ and n 2 1 − p 3 −→ ∞ as n → ∞ . This can be compared to the expectedly weaker necessary and sufficient condition for the central limit theorem for Z in [Ruc88]: np −→ ∞ and n 2 1 − p −→ ∞ as n → ∞. The concentration inequality in Theorem 1.3 for triangles turns to PW − EW ≥ ǫEW ≤ exp ‚ − const .ǫ 2 n 6 p 6 n 4 p 5 1 − p + const.ǫn 4 p −2 1 − p −1 Œ ∀ǫ 0 . Kim and Vu showed in [KV04] for all 0 ǫ ≤ 0.1 and for p ≥ 1 n log n, that P W − EW ǫp 3 n 3 ≥ 1 ≤ e −Θp 2 n 2 . As we will see in the proof of Theorem 1.3, the bound for dn in 1.12 leads to an additional term of order n 2 p 8 . Hence in general our bounds are not optimal. Optimal bounds were obtained only for some subgraphs. Our concentration inequality can be compared with the bounds in [JR02], which we leave to the reader.

1.2 Bernoulli random matrices

Theorem 1.1 can be reformulated as the moderate deviation principle for traces of a power of a Bernoulli random matrix. T HEOREM

1.5. Let X = X

i j i , j be a symmetric n × n-matrix of independent real-valued random vari- ables, Bernoulli-distributed with probability PX i j = 1 = 1 − PX i j = 0 = pn, i j and PX ii = 0 = 1, i = 1, . . . , n. Consider for any fixed k ≥ 3 the trace of the matrix to the power k TrX k = n X i 1 ,...,i k =1 X i 1 i 2 X i 2 i 3 · · · X i k i 1 . 1.8 Note that TrX k = 2 W , for W counting circles of length k in a random graph. We obtain that the sequence T n n with T n := TrX k − E[TrX k ] 2β n 1.9 satisfies the moderate deviation principle for any β n satisfying 1.4 with l = k and with rate function 1.6 with l = k and a = 2k: I x = x 2 2 k − 2 2 . 1.10 2640 R EMARK 1.6. The following is a famous open problem in random matrix theory: Consider X to be a symmetric n × n matrix with entries X i j i ≤ j being i.i.d., satisfying some exponential integrability. The question is to prove for any fixed k ≥ 3 the LDP for 1 n k TrX k and the MDP for 1 β n k TrX k − E[TrX k ] 1.11 for a properly chosen sequence β n k. For k = 1 the LDP in question immediately follows from Cramér’s theorem see [DZ98, Theorem 2.2.3], since 1 n TrX = 1 n n X i= 1 X ii . For k = 2, notice that 1 n 2 TrX 2 = 2 n 2 X i j X 2 i j + 1 n 2 n X i= 1 X 2 ii =: A n + B n . By Cramér’s theorem we know that ˜ A n n with ˜ A n := 1 n 2 P i j X 2 i j satisfies the LDP, and by Cheby- chev’s inequality we obtain for any ǫ 0 lim sup n →∞ 1 n log P |B n | ≥ ǫ = −∞. Hence A n n and 1 n 2 TrX 2 n are exponentially equivalent see [DZ98, Definition 4.2.10]. More- over A n n and ˜ A n n are exponentially equivalent, since Chebychev’s inequality leads to lim sup n →∞ 1 n log P |A n − ˜ A n | ǫ = lim sup n →∞ 1 n log P | X i j X 2 i j | ≥ ǫ n 2 n − 1 2 = −∞. Applying Theorem 4.2.13 in [DZ98], we obtain the LDP for 1n 2 TrX 2 n under exponential in- tegrability. For k ≥ 3, proving the LDP for 1n k TrX k n is open, even in the Bernoulli case. For Gaussian entries X i j with mean 0 and variance 1n, the LDP for the sequence of empirical measures of the corresponding eigenvalues λ 1 , . . . , λ n , e.g. 1 n n X i= 1 δ λ i , has been established by Ben Arous and Guionnet in [BAG97]. Although one has the representation 1 n k TrX k = 1 n k 2 Tr X p n k = 1 n k 2 n X i= 1 λ k i , the LDP cannot be deduced from the LDP of the empirical measure by the contraction principle [DZ98, Theorem 4.2.1], because x → x k is not bounded in this case. 2641 R EMARK 1.7. Theorem 1.5 told us that in the case of Bernoulli random variables X i j , the MDP for 1.11 holds for any k ≥ 3. For k = 1 and k = 2, the MDP for 1.11 holds for arbitrary i.i.d. entries X i j satisfying some exponential integrability: For k = 1 we choose β n 1 := a n with a n any sequence with lim n →∞ p n a n = 0 and lim n →∞ n a n = ∞. For 1 a n n X i= 1 X ii − EX ii the MDP holds with rate x 2 2VX 11 and speed a 2 n n, see Theorem 3.7.1 in [DZ98]. In the case of Bernoulli random variables, we choose β n 1 = a n with a n n any sequence with lim n →∞ p np 1 − p a n = 0 and lim n →∞ n p p 1 − p a n = ∞ and p = pn. Now 1 a n P n i= 1 X ii − EX ii n satisfies the MDP with rate function x 2 2 and speed a 2 n npn 1 − pn . Hence, in this case pn has to fulfill the condition n 2 pn 1 − pn → ∞. For k = 2, we choose β n 2 = a n with a n being any sequence with lim n →∞ n a n = 0 and lim n →∞ n 2 a n = ∞. Applying Chebychev’s inequality and exponential equivalence arguments similar as in Remark 1.6, we obtain the MDP for 1 a n n X i , j=1 X 2 i j − EX 2 i j with rate x 2 2VX 11 and speed a 2 n n 2 .The case of Bernoulli random variables can be obtained in a similar way. R EMARK 1.8. For k ≥ 3 we obtain the MDP with β n = β n k such that n k −1 pn k −1 p pn 1 − pn ≪ β n ≪ n k pn k −1 p pn 1 − pn 4 . Considering a fixed p, the range of β n is what we should expect: n k −1 ≪ β n ≪ n k . But we also obtain the MDP for functions pn. In random matrix theory, Wigner 1959 analysed Bernoulli random matrices in Nuclear Physics. Interestingly enough, the moderate deviation principle for the empirical mean of the eigenvalues of a random matrix is known only for symmetric matrices with Gaussian entries and for non-centered Gaussian entries, respectively, see [DGZ03]. The proofs depend on the existence of an explicit formula for the joint distribution of the eigenvalues or on corresponding matrix-valued stochastic processes.

1.3 Symmetric Statistics

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52