Let G be a fixed graph without isolated vertices, consisting of k ≥ 2 edges and l ≥ 3 Let G be a fixed graph without isolated vertices, consisting of k ≥ 2 edges and l ≥ 3

satisfies the LDP. Formally the moderate deviation principle is nothing else but the LDP. However, we will speak about the moderate deviation principle MDP for a sequence of random variables, whenever the scaling of the corresponding random variables is between that of an ordinary Law of Large Numbers and that of a Central Limit Theorem. In the following, we state one of our main results, the moderate deviation principle for the rescaled subgraph count statistic W when p is fixed, and when the sequence pn converges to 0 or 1 suffi- ciently slow. T HEOREM

1.1. Let G be a fixed graph without isolated vertices, consisting of k ≥ 2 edges and l ≥ 3

vertices. The sequence β n n is assumed to be increasing with n l −1 p k −1 p p 1 − p ≪ β n ≪ n l p k −1 p p 1 − p 4 . 1.4 Then the sequence S n n of subgraph count statistics S := S n := 1 β n X 1 ≤κ 1 ···κ k ≤ € n 2 Š 1 {e κ1 ,...,e κk ∼G} k Y i= 1 X κ i − p k satisfies the moderate deviation principle with speed s n = € 2k a l − 2 Š 2 β 2 n c 2 n ,p = 1 n −2 l −2 2 € n 2 Š 1 p 2k −1 1 − p β 2 n 1.5 and rate function I defined by I x = x 2 2 2k a l − 2 2 . 1.6 R EMARKS 1.2. 1. Using n −2 l −2 2 € n 2 Š ≤ n 2l −1 , we obtain s n ≥  β n n l −1 p k −1 p p 1 −p ‹ 2 ; therefore the condition n l −1 p k −1 p p 1 − p ≪ β n implies that s n is growing to infinity as n → ∞ and hence is a speed. 2. If we choose β n such that β n ≪ n l p k −1 p p 1 − p 4 and using the fact that s n is a speed implies that n 2 p 6k −3 1 − p 3 n→∞ −→ ∞ . 1.7 This is a necessary but not a sufficient condition on 1.4. Additionally the approach to prove Theorem 1.1 yields a central limit theorem for Z = W −EW c n ,p , see remark 4.2, and a concentration inequality for W − EW : T HEOREM

1.3. Let G be a fixed graph without isolated vertices, consisting of k ≥ 2 edges and l ≥ 3

vertices and let W be the number of copies of G. Then for every ǫ PW − EW ≥ ǫEW ≤ exp ‚ − const .ǫ 2 n 2l p 2k n 2l −2 p 2k −1 1 − p + const.ǫn 2l −2 p 1 −k 1 − p −1 Œ , where const . denote constants depending on l and k only. 2639 We will give a proof of Theorem 1.1 and Theorem 1.3 in the end of section 4. R EMARK 1.4. Let us consider the example of counting triangles: l = k = 3, a = 6. The necessary condition 1.7 of the moderate deviation principle turns to n 2 p 15 −→ ∞ and n 2 1 − p 3 −→ ∞ as n → ∞ . This can be compared to the expectedly weaker necessary and sufficient condition for the central limit theorem for Z in [Ruc88]: np −→ ∞ and n 2 1 − p −→ ∞ as n → ∞. The concentration inequality in Theorem 1.3 for triangles turns to PW − EW ≥ ǫEW ≤ exp ‚ − const .ǫ 2 n 6 p 6 n 4 p 5 1 − p + const.ǫn 4 p −2 1 − p −1 Œ ∀ǫ 0 . Kim and Vu showed in [KV04] for all 0 ǫ ≤ 0.1 and for p ≥ 1 n log n, that P W − EW ǫp 3 n 3 ≥ 1 ≤ e −Θp 2 n 2 . As we will see in the proof of Theorem 1.3, the bound for dn in 1.12 leads to an additional term of order n 2 p 8 . Hence in general our bounds are not optimal. Optimal bounds were obtained only for some subgraphs. Our concentration inequality can be compared with the bounds in [JR02], which we leave to the reader.

1.2 Bernoulli random matrices

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52