Istilah-istilah Dalam Analisis Konjoin Tujuan Analisis Konjoin Tahapan – Tahapan Analisis Konjoin

2.2.2 Istilah-istilah Dalam Analisis Konjoin

Adapun beberapa istilah dalam analisis konjoin adalah: 1. Atribut, yaitu berupa variabel-variabel yang akan diteliti. 2. Taraflevel, yaitu bagian dari atribut yang menunjukkan nilai yang diasumsikan oleh atribut. 3. Stimuli, yaitu sekelompok atribut yang dievaluasi oleh responden yang berasal dari kombinasi atau desain taraf-taraf atribut. 4. Nilai kepentingan relatif Relative Importance Value, yaitu nilai yang menunjukkan atribut yang paling penting dalam mempengaruhi pilihan responden. 5. Nilai kegunaan utilitas, yaitu teori ekonomi yang mempelajari kepuasan atau kenikmatan yang diperoleh dari seorang konsumen. Semakin tinggi tingkat kepuasan maka semakin tinggi pula nilai guna utilitas dan sebaliknya. Nilai guna dibedakan dalam dua pengertian: a. Nilai guna marginal, yaitu pertambahanpengurangan kepuasan akibat adanya pertambahanpengurangan pengunaan satu unit barang tertentu. b. Total nilai guna, yaitu keseluruhan kepuasan yang diperoleh dari mengomsumsi sejumlah barang-barang tertentu.

2.2.3 Tujuan Analisis Konjoin

Tujuan analisis konjoin adalah untuk mengetahui bagaimana persepsi seseorang terhadap suatu objek yang terdiri dari atas satu atau banyak bagian. Hasil utama analisis konjoin adalah suatu bentuk desain produk barang atau jasa, atau objek tertentu yang diinginkan oleh sebagian responden Singgih,2010. Ubiversitas Sumatera Utara

2.2.4 Tahapan – Tahapan Analisis Konjoin

Tahapan – tahapan yang perlu dilakukan dalam merancang dan melaksanakan analisis konjoin secara umum sebagai berikut : Gambar 2.1 Tahapan Analisis Konjoin Tahap 1 .Perumusan masalah dan mengidentifikasi atribut Langkah awal dalam melakukan analisis konjoin yaitu perumusan masalah. Setelah adanya perumusan masalah maka dicarilah kumpulan atribut dimana setiap atribut terdiri atas beberapa taraflevel. Informasi mengenai atribut yang mewakili preferensi konsumen dapat diperoleh melalui diskusi dengan pakar, eksplorasi data sekunder atau studi kepustakaan. Kemudian atribut yang sudah dianggap mewakili ditentukan datanya. Skala atribut dibagi menjadi skala kualitatifnon-metrik atau kategori nominal dan ordinal dan skala kuantitatif atau metrik interval dan rasio. Mengindentifikasi atribut Merancang kombinasi atribut atau stimuli Menentukan Metode Pengumpulan data Menentukan metode analisis Hasil Analisis dan Interpretasinya Ubiversitas Sumatera Utara Tahap 2 Merancang kombinasi atribut stimuli Stimuli merupakan sekelompok atribut yang dievaluasi oleh responden. Dalam desain stimuli termasuk memilih atribut dan taraf atribut yang akan digunakan untuk membuat stimuli. Ada 2 cara pembentukan stimuli dalam analisis konjoin yaitu metode full profile atau mengevaluasi banyak faktor dan metode pairwase comparasion atau metode evaluasi dua faktor. 1. Full Profile Analisis konjoin full profile yang diperkenalkan terlebih dahulu merupakan rancangan kombinasi yang menggambarkan profil produk secara lengkap. Jumlah stimuli dapat dikurangi dengan menggunakan menggunakan fractional factorial design yang memungkinkan mengestimasi semua main effects. Desain ini mengasumsikan bahwa setiap interaksi yang tidak penting diabaikan. Untuk membentuk stimuli dirancang dengan menggunakan SPSS FOR WINDOWS 17.0 sehingga diperoleh 15 minimal stimuli. Setiap stimuli berisi kombinasi antara atribut dengan taraf, dimana tiap stimuli menggambarkan profil tiap objek secara lengkap. Responden mengevaluasi masing-masing stimuli mulai dari stimuli yang paling diminatidianggap penting hingga stimuli yang paling tidak diminatiyang paling dianggap tidak penting dengan cara rating memberi peringkat. Keuntungan menggunakan metode ini adalah: 1. Diperoleh deskripsi yang lebih realistis dengan menjelaskan setiap stimuli berisikan sebuah taraf dari masing-masing atribut. 2. Menggambarkan trade-off yang lebih jelas antara seluruh atribut yang tersedia. Sedangkan kendala menggunakan metode ini adalah metode full-profile disarankan apabila jumlah atribut yang diteliti antara enam sampai sembilan atribut saja Hair et al, 2006. Ubiversitas Sumatera Utara 2.Pairwise Comparison Metode Pairwise Comparison digunakan apabila atribut yang dianalisis cukup banyak dan dengan jumlah taraflevel yang banyak pula. Penemu metode ini adalah Richard Johnson. Melalui pendekatan ini dibandingkan pasangan profil dari dua atribut. Responden mengevaluasi pasangan atribut secara bersamaan. Bila ada p atribut berarti jumlah pasangan yang dievaluasi sebanyak pp-12 pasangan.Kuhfeld, 2000. Tahap 3 Menentukan metode pengumpulan data Data yang diperlukan dalam analisis konjoin dapat berupa data non-metrikdata berskala nominal, ordinal atau kategorial maupun data metrik data berskala interval atau rasio. Untuk memperoleh data dalam bentuk non-metrik, responden diminta untuk membuat ranking atau mengurutkan stimuli pada tahap yang telah dibuat sebelumnya. Perangkingan dimulai dari satu dan seterusnya hingga ranking terakhir bagi stimuli yang paling tidak disukai. Sedangkan untuk memperoleh data dalam bentuk metrik, responden diminta untuk memberikan nilai atau rating terhadap masing-masing stimuli. Dengan cara ini, responden akan dapat memberikan penilaian terhadap masing-masing stimuli secara terpisah. Pemberian nilai atau rating dapat dilakukan menggunakan skala likert 1 hingga 5 1=paling tidak disukai dan 5=paling disukai atau menggunakan nilai ranking, artinya untuk stimuli yang paling tidak disukai diberi nilai tertinggi setara dengan jumlah stimulinya, sedangkan stimuli yang paling disukai diberi nilai satu. Tahap 4 Menentukan metode analisis yang digunakan Berdasarkan tipe data dan cara pengumpulan datanya, prosedur analisis yang digunakan adalah analisis konjoin full-profile menggunakan metode regresi dengan variabel dummy. Variabel yang dianalisis dengan model regresi dapat berupa variabel kuantitatif maupun variabel kualitatif. Variabel kualitatif dalam model regresi sering disebut dengan istilah variabel Ubiversitas Sumatera Utara dummy. Untuk variabel kualitatif yang mempunyai k kategori dapat dibangun k-1 peubah boneka. Variabel ini biasanya mengambil nilai 1 atau 0. Kedua nilai yang diberikan tidak menunjukkan bilangan numerik tetapi hanya sebagai identifikasi kelas atau kategorinya. Atribut yang mempunyai dua taraf diberi kode 1 untuk salah satu taraf dan 0 untuk taraf lainnya. Atribut yang mempunyai tiga taraf, pengkodeannya sebagai berikut: Tabel 2.1 Pengkodean Variabel Dummy Taraf Kode Taraf 1 1 Taraf 2 1 Taraf 3 Untuk taraf lebih dari tiga, pengkodean dilakukan dengan cara yang sama sehingga setiap faktor memiliki k-1 variabel dummy. Banyaknya variabel ini sama dengan banyaknya kategori taraf dikurangi satuJ Supranto, 2004. Metode Regresi dengan variabel dummy sangat umum digunakan untuk data berjenis non-metrik maupun metrik, dimana data telah diperoleh melalui pengurutan maupun penilaian terhadap kombinasi atribut atau stimuli yang telah dirancang sebelumnya. Adapun secara umum model dasar analisis konjoin adalah: U x = ∑ ∑ � �� � � �=� � �=� � �� Keterangan: U x = Utilitas total dari tiap-tiap stimuli � �� = Nilai kegunaan dari atribut ke-i i=1,2,3…m dan taraflevel ke-j j=1,2,3…k i � � = Jumlah taraflevel atribut ke-i m = Jumlah atribut � �� = Bernilai 1 jika atribut variabel dummy ke-i taraf ke-j terjadi dan 0 jika tidak terjadi Ubiversitas Sumatera Utara Regresi linier biasanya digunakan untuk mendapatkan model analisis konjoin tersebut, kemudian dapat ditentukan nilai kegunaan dari taraf-taraf tiap atribut untuk menentukan nilai pentingnya suatu taraf relatif terhadap taraf yang lain pada suatu atribut. Setelah menentukan nilai kegunaan taraf, maka nilai kepentingan relatif bobot dapat dihitung dengan formula sebagai berikut: � � = � � ∑ � � � �=� Keterangan: � � = Bobot kepentingan relatif untuk tiap atribut � � = Range nilai kepentingan untuk tiap atribut yang dicari dengan rumus I i = {maksa ij – mina ij } Tahap 5 Interpretasi Hasil MenurutKuhfeld2000 ada beberapa ketentuan dalam melakukan interpretasi hasil yaitu: a. Taraf yang memiliki nilai kegunaan lebih tinggi adalah taraf yang lebih disukai. b. Total nilai kegunaan masing-masing kombinasi sama dengan jumlah nilai kegunaan tiap taraf dari atribut-atribut tersebut. c. Kombinasi yang memiliki total nilai kegunaan tertinggi adalah kombinasi yang paling disukai responden. d. Atribut yang memiliki perbedaan nilai kegunaan lebih besar antara nilai kegunaan taraf tertinggi dan terendahnya merupakan atribut yang lebih penting. Ubiversitas Sumatera Utara

2.3 Uji Validitas dan Reliabilitas