BAB III PENDEKATAN MODEL HYSTERETIC DAMPER
3.1. Pendahuluan
Studi disipasi energi pasif ini dimulai pada pertengahan 1990-an . Berbeda dengan pendekatan desain seismik tradisional  yang bergantung pada deformasi
inelastis bagian tertentu dari  struktur untuk menghilangkan sebagian besar masukan energi akibat gempa seperti balok dan kolom, dalam sistem kontrol pasif
energi ini disalurkan ke perangkat khusus yang disebut peredam gempa atau yang saat ini popular dengan sebutan damper  .  Damper  jenis ini memiliki banyak
keuntungan : i
Deformasi inelastis terkonsentrasi pada  peredam dan kerusakan dalam struktur yang sudah tua dapat secara drastis  dikurangi atau
bahkan dihilangkan ii
Penambahan redaman mengurangi perpindahan lateral struktur, yang  juga mengurangi kerusakan elemen non – struktural.
iii Dengan penempatan strategis peredam seismik, inspeksi, perbaikan
atau penggantian setelah gempa bumi dapat dilakukan dengan biaya minimal dan tanpa mengganggu hunian.
Dissipasi energi pasif sistem ini sekarang diakui sebagai cara yang efektif dan murah untuk mengurangi risiko gempa untuk struktur.
3.2 Kerangka Penulisan
Kerangka penelitian merupakan gambaran umum mengenai tahapan dan ruang lingkup yang dilakukan dalam suatu peneltian. Gambar 3.2 berikut
menjelaskan tentang kerangka penelitian yang dimaksud.
Universitas Sumatera Utara
Gambar 3.1 Kerangka Penulisan
START
JUDUL TUGAS AKHIR:
PENDEKATAN MODEL HYSTERISTIC STEEL DAMPER BERDASARKAN HASIL EKSPERIMENTAL
PENGUJIAN DI LABORATORIUM
HSD 1 HSD 2
HSD 3 HSD 4
PENGOLAHAN DATA
SKELETON PART BAUSCHINGER PART
PENYAJIAN DATA
KESIMPULAN DAN SARAN KURVA HYSTERISIS
PEMISAHAN KURVA HYSTERISIS
PENDEDKATAN MODEL TRILINIER
KURVA HYSTERISIS
K
efektif
RASIO DAMPING
Universitas Sumatera Utara
3.3. Outline Studi Eksperimental
Dari penelitian yang telah dilakukan sebelumnya seperti dijelaskan pada bab sebelumnya  bahwa peredam leleh baja akan efektif menyerap energi gempa
bila kurva hysteresis gemuk dan stabil serta  mengalami pelelehan secara bersamaan. Untuk peredam leleh dengan kedua ujungnya disambung secara kaku
sehingga akibat gaya geser akan melentur dengan kurvatur ganda dengan bidang momen berbentuk linier dengan maksimum pada kedua ujungnya dan bernilai nol
ditengahnya. Sedangkan gaya geser akan konstan sepanjang tinggi peredam. Oleh sebab itu bentuk X banyak digunakan  karena  diagram kapasitas momen leleh
penampang sama dengan bentuk  momen yang terjadi yaitu sama-sama linier.
Kekurangan sistem ini adalah kekakuannya lebih kecil sehingga untuk mendapatkan kekakuan yang besar jumlahnya dibuat lebih banyak. Untuk
mengatasi kelemahan ini, maka  peredam leleh baja  dapat dipasang dengan brasing dalam arah sumbu kuatnya.
Studi numerik yang dilakukan oleh Daniel 2011  terhadap  3 jenis peredam leleh  dengan bentuk geometri lubang seperti belah ketupat DAM,
bentuk X ganda DBX, dan  lubang bentuk elips ELP seperti pada gambar 2. Ketiga jenis ini  diberi beban cyclic  dalam arah sumbu kuatnya major axis
bending, dimana kemampuan dalam mengabsorb energi dinyatakan dalam bentuk kurva hysteresis loop pada batas regangan 0.25. Dalam pemodelan   sifat
hardening material baja akibat beban siklik  dimodelkan sebagai kombinasi isotopic hardening dan kinematic hardening.  Walaupun ketiga bentuk ini
menunjukkan kurva hysteresis yang stabil dan gemuk, tetapi bentuk X ganda  ini memiliki kurva hysteresis yang lebih gemuk bila dibandingkan dengan kedua
Universitas Sumatera Utara
jenis lainnya seperti ditunjukkan pada gambar 3.6  Luas dibawah kurva hyteresis loop
D
W
menyatakan besarnya energi yang dissipasi oleh peredam leleh baja.
Gambar 3.2. Bentuk geometri ketiga peredam leleh baja Daniel. 2011
Joule x
W DAM
peredam a
D 5
10 123
. 1
. =
Joule x
W ELP
peredam b
D 5
10 0538
. 1
. =
Universitas Sumatera Utara
3.3.1. Spesimen
Sebagaimana dijelaskan sebelumnya peredam bentuk-X yang memliki hysteresis loop yang gemuk dan stabil dan mengingat kapasitas momen lentur
peredam leleh baja bentuk X ini  tidak linier lagi bila dipasang dalam arah sumbu kuatnya, maka penulis melakukan kajian numerikal lagi terhadap lima jenis
geometri dari modifikasi bentuk X  lihat gambar 3.7 yang dibentuk dari  pelat baja  ukuran 210mm x 300mm dengan tebal 20mm seperti ditunjukkan  pada
gambar 3.8. Joule
x W
DBX peredam
c
D 5
10 6659
. 1
, .
= Gambar 3.3. Kurva hysteresis loop  peredam lelah baja Daniel. 2011
Universitas Sumatera Utara
Gambar 3.5  Spesimen untuk uji experimental Daniel. 2011
a. HSD 1 b. HSD 2
c. HSD 3 d. HSD 4
Gambar 3.4 Hollow Steel Damper HSD. Sumber: Daniel, Yurisman, Rahmi 2013
Universitas Sumatera Utara
Gambar 3.6 Bentuk  geometri  peredam  leleh baja. Sumber: Daniel, Yurisman, Rahmi 2013
Keempat spesimen peredam lelah baja ini  mempunyai tebal 20 mm dengan bentuk geometri sisinya lurus HSD1,   cembung HSD2, cekung
HSD3,  dan bentuk cembung HSD4. Dimana jenis  HSD4 dan HSD2 hanya berbeda dimensi lebar ditengahnya. Keempat  spesimen peredam ini diprediksi
bisa meleleh keseluruhan tingginya sebelum tekuk torsional terjadi dan bentuk
cembung X-ganda diyakini lebih baik dari bentuk lurus atau cekung.  Elemen
Universitas Sumatera Utara
dimodelkan sebagai elemen solid, dimana elemen ini mempunyai 8 node dan hanya satu titik integrasi sehingga sangat menghemat waktu eksekusi program.
Namun,  elemen ini rentan terhadap problem stabilitas numerik yang dikenal dengan nama hourglassing. Untuk mengatasi masalah ini biasanya mesh harus
cukup halus dan minimum 4 layer elemen  dalam arah ketebalan.
3.3.2. Uji Tarik Pelat Baja
Uji tarik baja ini dilakukan dengan menggunakan mesin Universal testing machine UTM merek Dartec dengan kapasitas pembebanan 1500 kN.
Gambar 3.7 Bentuk tipikal spesimen untuk uji tarik
Dari hasil uji tarik ini didapat kurva hubungan tegangan dan regangan baja seperti pada gambar 10. Dari hasil uji tarik ini didapat tegangan leleh
σ
y
= 279.7 Nmm
2
dan tegangan ultimate
σ
u
= 458.3 Nmm
2
. Data ini dibutuhkan untuk melakukan kajian numerical.
Gambar 3.8 Bentuk  kurva hubungan tegangan- regangan.
Universitas Sumatera Utara
Hasil dari uji tarik ini disimpulkan bahwa bahan dasar baja yang digunakan memiliki daktilitas yang baik untuk dijadikan spesimen bahan dasar
peredam leleh baja damper.
3.3.3 Detail Pengujian Spesimen
Spesimen  peredam leleh baja dengan bentuk X ganda yang telah dimodifikasi    dengan  variasi lebar, tinggi dan tebal akan dibebani dengan beban
siklik dengan metode kontrol perpindahan sampai spesimen gagal atau tidak stabil.  Bentuk dan susunan model pengujian spesimen peredam seperti
ditunjukkan pada gambar 3.9.
Gambar 3.9 a. Tampak samping set-up detail Sumber: Daniel, Yurisman, Rahmi 2013
Universitas Sumatera Utara
Gambar 3.9 b. Tampak depan set-up detail Sumber: Daniel, Yurisman, Rahmi 2013
Gambar 3.10 Contoh pemasangan spesimen pada alat uji Sumber: Daniel, Yurisman, Rahmi 2013
Universitas Sumatera Utara
3.3.4 Hasil Ekperimental
Langkah pelaksanaan di laboratorium dilakukan sebagai berikut. Setiap kali pengujian dilakukan dengan cara pencatatan besar perpindahan horizontal
dengan alat linier variable displacement transducer dan regangan yang terjadi. Semua data ini akan disimpan dan  selanjutnya dari catatan tersebut akan
dihasilkan suatu grafik yang mengambarkan hubungan  perpindahan dan  besar beban  yang diberikan. Grafik ini dikenal sebagai kurva hysteresis
Berikut ini adalah hasil dari eksperimental yang dilakukan pada keempat spesimen peredam leleh baja dengan bentuk X ganda yang telah dimodifikasi
dengan  variasi lebar, tinggi dan tebal seperti yang telah dijelaskan sebelumnya.
Gambar 3.11 Kurva hysteresis HSD 1
-250 -200
-150 -100
-50 50
100 150
200 250
-60 -50
-40 -30
-20 -10
10 20
30 40
50 60
Perpindahan mm
G aya
k N
Kurva HSD 1
Universitas Sumatera Utara
Gambar 3.12 Kurva hysteresis HSD 2
Gambar 3.13 Kurva hysteresis HSD 3
-300 -250
-200 -150
-100 -50
50 100
150 200
250 300
350
-60 -50
-40 -30
-20 -10
10 20
30 40
50 60
G aya
k N
Perpindahan mm
Kurva HSD 2
-250 -200
-150 -100
-50 50
100 150
200
-60 -40
-20 20
40 60
Perpindahan mm
G aya
k N
Kurva HSD 3
Universitas Sumatera Utara
Gambar 3.14 Kurva hysteresis HSD 4
Kurva hysteresis  dapat memberi gambaran kemampuan peredam dalam menyerap energi. Dari  kurva ini dapat dihitung nilai redaman hysteretik dan
diperkirakan bisa mencapai 40. Dari kurva tersebut akan didapatkan karakteristik mekanik dari peredam leleh baja seperti kekuatan leleh, kekakuan
elastis dan kekakuan pasca leleh berdasarkan bentuk kurva hysteresis yang didapat. Nilai-nilai  ini dibutuhkan untuk  melakukan  pemodelan peredam pada
simulasi numerikal  dalam perencanaan bangunan tahan gempa.
-300 -250
-200 -150
-100 -50
50 100
150 200
250 300
-60 -50
-40 -30
-20 -10
10 20
30 40
50 60
G aya
k N
Perpindahan mm
Kurva HSD 4
Universitas Sumatera Utara
3.4. Analisa Pemisahan Kurva Histeresis
Kurva ini adalah kurva hubungan antara gaya dan perpindahan. Kurva ini adalah hasil dari deformasi siklik  bahan leleh baja sehingga terjadi degradasi
kekuatan yang diasumsikan merupakan titik kegagalan struktur. Kapasitas disipasi energi metallic damper sangat tergantung pada pola pembebanan yang diterapkan.
Maka salah satu cara untuk mewakili ketergantungan ini dibuat pembagian energi total disipasi oleh perangkat redaman menjadi apa yang disebut skeleton part dan
Bauschinger part. Benavent-Climent 2010 menguraikan  jumlah total regangan plastis
energi disipasi oleh perangkat redaman sebagai berikut. Segmen 0-1 , 5-6 , 11-12 , 17-18 dalam domain positif dan 2-3 , 8-9 , 14-15 dalam domain negatif dari garis
yang melebihi tingkat beban dicapai  sebelumnya  oleh  siklus dalam domain pembebanan yang sama.  Dengan menghubungkan segmen ini secara berurutan,
seperti yang ditunjukkan pada Gambar 3.17 b , maka akan diperoleh kurva yang disebut  skeleton part  . Kato dkk,  memverifikasi  bahwa, di bawah  pembebanan
yang tidak konstan akan  mengubah deformasi , skeleton curve ini didekati dengan hubungan  Q  -
δ  yang  diperoleh berdasarkan monotonic loading.  Skeleton curve dapat didekati dengan kurva trilinear ditunjukkan dengan garis putus-putus  pada
Gambar  3.16 b, yang didefinisikan oleh beban lentur Q
y
,  perpindahan gaya lentur δ
y
,  kekakuan plastik yang pertama dan kedua K
P1
dan K
P2
K
P1
≥ K
P2
, dan beban Q
B
, yang menentukan titik perpindahan dari K
P1
ke K
P2
.
Universitas Sumatera Utara
Gambar 3.15 Pemisahan kurva histeresis: a kurva asli; b skeleton part; dan c Bauschinger part.
Universitas Sumatera Utara
Gambar 3.16 Tri-linear model dari skeleton part
Selain itu, pendekatan  skeleton  curve  untuk hysteretic damper yang di peroleh dari hasil penelitian sebelumnya diidealkan dengan model tri-linear  dengan
kekakuan normal K
P1
dan K
P2
seperti pada gambar 3.17. Segmen 1-2 , 6-7 , 12-13 , 18-19 , 3-4 , 9-10 , dan 15-16  adalah  unloading path  , yang kemiringannya
merupakan kekakuan elastis awal Ke  = Q
y
δ
y
. Dalam Gambar 3.16 b,
S
�
� +
dan
S
�
� −
menunjukkan deformasi plastik terakumulasi di setiap  skeleton curve  pada saat  komponen baja  mengalami    kegagalan  , dan
��
�
adalah deformasi plastis terakumulasi dalam pendekatan skeleton curve  model trilinear di Q = Q
B
. Untuk setiap domain pembebanan pada Gambar 3.16 b,  daerah yang dibatasi oleh
unloading path  pada saat melewati titik maksimum  beban dan sumbu horizontal dari titik maksimum tersebut ditarik terhadap siklus kurva sebelumnya ini disebut
Universitas Sumatera Utara
dengan  daerah  skeleton curve  yang merupakan bagian  dari total disipasi  energi regangan  plastis oleh komponen baja, yang disebut sebagai
S
�
� +
dan
S
�
� −
. Segmen 4-5 ,10-11 , 16-17 dalam domain  positif dan 7-8 , 13-14 dalam domain
negatif beban mulai dari Q = 0 dan berakhir pada tingkat beban maksimum yang sebelumnya dicapai dalam siklus sebelumnya pada domain pembebanan yang
sama. Ini adalah jalur yang melunak oleh efek  Bauschinger yang akan menjadi Bauschinger part    .  Hal ini lebih jelasnya dapat dilihat pada Gambar 3.16 c.
Untuk setiap domain pembebanan,  jumlah daerah diselimuti oleh setiap Bauschinger part, dengan unloading path melewati melalui titik beban maksimum
segmen dan dengan sumbu horisontal , merupakan  Bauschinger part   dari total disispasi  energi  regangan  plastik oleh komponen baja,  disebut sebagai
B
�
� +
dan
B
�
� −
.
3.5. Disipasi Energi Damping