=M[2]; d:=7: k:=B[1]; =mind-1,k; L:=ListKombMM, =17: B5:=DelVekMi,B6: =16: B4:=DelVekMi,B5: =15: B3:=DelVekMi,B4: =14: B2:=DelVekMi,B3: =12: B1:=DelVekMi,B2: =9: B:=DelVekMi,B1;

NonZeroWtC17PX; save Code71714, D:\\coding new\\Coding Theory\\DataOutD7Xt\\CdD7k17r14.m; Eksplorasi dilanjutkan: read D:\\coding new\\Coding Theory\\DataOutD7Xt\\CdD7k17r14.m; nopsCode71714; B6:=Code71714[1];

i:=17: B5:=DelVekMi,B6:

i:=16: B4:=DelVekMi,B5:

i:=15: B3:=DelVekMi,B4:

i:=14: B2:=DelVekMi,B3:

i:=12: B1:=DelVekMi,B2:

i:=9: B:=DelVekMi,B1;

M:=UbahMtxCRB; r:=M[2]; d:=7: k:=B[1]; t:=mind-1,k; L:=ListKombMM,t: H:=Kolek1VekMd,r,r,L: nopsH; P:=[{},{seqi,i=1..nopsH}]: K:=IdxAddXVd,P,H,L,0,6: nopsK; save K, D:\\coding new\\Coding Theory\\DataOutD7Xt\\DatKD7.m; read D:\\coding new\\Coding Theory\\DataOutD7Xt\\DatKD7.m; H5:=DefHXK,H: nopsH5; H6:=KolekXVMd,K,H,L: nopsH6; Q:=ReduEkiXH5,M: nopsQ; Akhirnya, diperoleh 4 kode optimal [31,17,7] tidak saling ekivalen. T:=mapX-AddVekMXX,M,Q: Code71714:=mapX-UbahMtxRCX,T: C17PX:=Code71714[4]; NonZeroWtC17PX; save Code71714, D:\\coding new\\Coding Theory\\DataOutD7Xt\\CdD7k17r14.m; ABSTRACT ASRIZA RAHMA. Construction of Strongly Optimal Linear Binary Codes with Minimum Distance of 5 and 7. Under supervision of SUGI GURITMAN and NUR ALIATININGTYAS. A code which is also a subspace of is called linear binary code. If C has length n, dimension k and minimum distance d, then C is an [n, k, d] code. The main problem in coding theory is optimizing one of the parameters n, k, and d for given values of the others. In this research, the strongly optimal linear binary codes are constructed by using Gilbert-Varshamov bound and implemented using MAPLE software. In this case, the constructed basic code C[n, k, d] is then extended to obtain the code [ , , ], which can not be extended anymore and which is known from the previus research that [ +1, +1,d] does not exist. As a result, [ , , ] is strongly optimal code. The strongly optimal codes that has been successfully constructed are the codes with parameters [8,2,5], [11,4,5], [17,9,5], [23,14,5], [31,21,5], [33,23,5], [11,2,7], [15,5,7], [23,12,7], [27,14,7], [30,16,7] and [31,17,7]. Keywords: linear binary codes, strongly optimal, and minimum distance.