Generating function of E x ⊂ C t := t

Definition 2.4. A partition λ is a sequence of nonnegative integers λ 1 , λ 2 , · · · with λ 1 ≥ λ 2 ≥ · · · and ∞ X i=1 λ i ∞. The length l λ and the size |λ| of λ are defined as l λ := max i ∈ N; λ i 6= 0 and | λ| := ∞ X i=1 λ i . We set λ ⊢ n := λ partition ; |λ| = n for n ∈ N. An element of λ ⊢ n is called a partition of n. Remark: we only write the non zero components of a partition. Choose any σ ∈ S n and write it as σ 1 σ 2 · · · σ l with σ i disjoint cycles of length λ i . Since disjoint cycles commute, we can assume that λ 1 ≥ λ 2 · · · ≥ λ l . Therefore λ := λ 1 , · · · , λ l is a partition of n. Definition 2.5. We call the partition λ the cycle-type of σ ∈ S n . Definition 2.6. Let λ be a partition of n. We define C λ ⊂ S n to be the set of all elements with cycle type λ. It follows immediately from 2.5 that Z n xσ only depends on the cycle type of σ. If σ, θ ∈ S n have different cycle type then Z n xσ 6= Z n xθ . Therefore two elements in S n can only be conjugated if they have the same cycle type since Z n x is a class function. One can find in [3, chapter 39] or in [12, chapter I.7, p.60] that this condition is sufficient. The cardinality of each C λ can be found also in [3, chapter 39]. Lemma 2.7. We have |C λ | = n z λ with z λ := n Y r=1 r c r c r and c r = c r λ := i| λ i = r . 2.6 We put lemma 2.7 and 2.5 together and get Lemma 2.8. Let x ∈ C p and s ∈ N p be given. Then E ” Z s n x — = X λ⊢n 1 z λ p Y k=1 l λ Y m=1 1 − x λ m k s k . 2.7 Obviously, it is very difficult to calculate E ” Z s n x — explicitly. It is much easier to write down the generating function.

2.3 Generating function of E

” Z s n x — We now give the definition of a generating function, some lemmas and apply them to the sequence € E ” Z s n x —Š n∈N . 1096 Definition 2.9. Let f n n∈N be given. The formal power series f t := P ∞ n=0 f n t n is called the gen- erating function of the sequence f n n∈N . If a formal power series f t = P n∈N f n t n is given then f n := f n . We will only look at the case f n ∈ C and f convergent. Lemma 2.10. Let a m m∈N be a sequence of complex numbers. Then X λ 1 z λ a λ t |λ| = exp X m=1 1 m a m t m with a λ := l λ Y i=1 a λ i . 2.8 If RHS or LHS of 2.8 is absolutely convergent then so is the other. Proof. The proof can be found in [12, chapter I.2, p.16-17] or can be directly verified using the definitions of z λ and the exponential function. In view of 2.7 is natural to use lemma 2.10 with a m = Q p j=1 1− x m j s j to write down the generating function of the sequence € E ” Z s n x —Š n∈N . We formulate this a lemma, but with a m = Px m for P a polynomial. We do this since the calculations are the same as for a m = Q p j=1 1 − x m j s j . Lemma 2.11. Let Px = P k∈N p b k x k be a polynomial with b k ∈ C and x k := Q p j=1 x k j j . We set for a partition λ P λ x := l λ Y m=1 P x λ m with x λ m = x λ m 1 , · · · , x λ m p and Ω := ¦

t, x ⊂ C

p+1 ; |t| 1, kxk ≤ 1 © . We then have X λ 1 z λ P λ xt |λ| = Y k∈N p 1 − x k t −b k 2.9 and both sides of 2.9 are holomorphic on Ω. We use the principal branch of the logarithm to define z s for z ∈ C \ R − . Proof. We only prove the case p = 2. The other cases are similar. We use 2.8 with a m = Px m 1 , x m 2 and get X λ 1 z λ l λ Y m=1 Px λ m 1 , x λ m 2 t |λ| = exp X m=1 1 m Px m 1 , x m 2 t m = exp    ∞ X k 1 ,k 2 =0 b k 1 ,k 2 ∞ X m=1 t m m x k 1 1 x k 2 2 m    = exp    ∞ X k 1 ,k 2 =0 b k 1 ,k 2 −1Log1 − x k 1 1 x k 2 2 t    = ∞ Y k 1 ,k 2 =0 1 − x k 1 1 x k 2 2 t −b k1,k2 . The exchange of the sums is allowed since there are only finitely many non zero b k 1 ,k 2 . Since we have used the Taylor-expansion of Log1 + z near 0, we have to assume that |t x k 1 1 x k 2 2 | 1 if b k 1 ,k 2 6= 0. 1097 We now write down the generating function of E ” Z s n x — . Theorem 2.12. Let s ∈ N p and x ∈ C p . We set f s

x, t :=

Y k∈N p € 1 − x k t Š − s k −1 k with s k −1 k := p Y j=1 s j k j −1 k j . 2.10 Then E ” Z s n x — = ” f s

x, t

— n . Proof. This is 2.7 and lemma 2.11 with P x = Q p j=1 1 − x j s j . Remark: we use the convention E ” Z s x — := 1. Remark: In an earlier draft version, the above proof was based on representation theory. It was at least twice as long and much more difficult. We wish to acknowledge Paul-Olivier Dehaye, who has suggested the above proof and allowed us to us it. Corollary 2.12.1. For n ≥ 1, p = s = 1, we have that E Z n x = 1 − x. 2.11 Proof. 1 − x t 1 − t = ∞ X n=0 t n − x t ∞ X n=0 t n = 1 + 1 − x ∞ X n=1 t n

2.4 Asymptotics for kxk

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52