Case s getdoc3ed9. 334KB Jun 04 2011 12:04:18 AM

4.1 Case s

2 = 0 We use the generating function of theorem 2.12. We have to calculate the growth rate of ” f s x, t — n . But f s x, t is a quite complicated expression and we therefore express it in a dif- ferent way. Since f s x, t is a rational function, we can do a partial fractional decomposition with respect to t and x fixed. f s x, t = s Y k=0 € 1 − x k t Š −1 k+1 s k = Pt + X k even s k X l=1 a k,l 1 − x k t l 4.1 where P is a polynomial and a k,l ∈ C. This formulation can be found in [10, chapter 69.4, p.401]. Note that at this point we need the condition that x is not a root of unity. If x is a root of unity, some factors can be equal and cancel or increase the power. For example, we have f s 1, t = 1 for all s ∈ C. What is the growth rate of h 1 1−x k t l i n ? We have for l ∈ N and |t| 1 1 1 − t l = 1 l − 1 ∞ X n=0 l−1 Y k=1 n + k t n . 4.2 This equation can be shown by differentiating the geometric series. We get 1 1 − x k t l n ∼ n l−1 x k n l − 1 . Recall that An ∼ Bn if lim n→∞ An Bn = 1. Since |x| = 1, we have 1 1 − x k t l n ∼ n l−1 l − 1 . 4.3 We know from 4.3 the growth rate of each summand in 4.1. Since we have only finitely many summands, only these a k,l 1−x k t l are relevant with l maximal and a k,l 6= 0. The LHS of 4.1 has for t = x k a pole of order s k for 0 ≤ k ≤ s and k even. We therefore have a k, s k 6= 0 since there is only one summand on the RHS of 4.1 with a pole at t = x k of order at least s k . Before we can write down the growth rate of E ” Z s n x — , we have to define Definition 4.1. Let s, k ∈ N with 0 ≤ k ≤ s and k even. We set Ck := 1 s k − 1 Y k6=k € 1 − x k x k Š −1 k+1 s k . 4.4 We put everything together and get Lemma 4.2. We have for s 6= 4m + 2 E ” Z s n x — ∼ n s k0 −1 Ck x k n 4.5 1112 with k :=    2m, for s = 4m, 2m, for s = 4m + 1, 2m + 2, for s = 4m + 3. Proof. We have to calculate M := max k even s k . A straight forward verification shows that M = s k and that there is only one summand with exponent M in the case s 6= 4m + 2. We apply 4.3 and get E ” Z s n x — ∼ n s k0 −1 a k , s k0 s k − 1 x k n . By the residue theorem a k , s k0 = Q k6=k € 1 − x k x k Š −1 k+1 s k . This proves 4.5. We see in the next lemma that there can appear more than one constant. This is the reason why we write Ck for the constant and not C or Cs, x. The case s = 4m + 2 is a little bit more difficult, since there are two maximal terms, i.e. 4m+2 2m = 4m+2 2m+2 . Lemma 4.3. If s = 4m + 2 then E ” Z s n x — ∼ n 4m+2 2m −1 C2mx 2m n + C2m + 2x 2m+2 n 4.6 with C2mx 2m n + C2m + 2x 2m+2 n = 0 for at most one n. Proof. A straight forward verification as in lemma 4.2 shows that M = 4m+2 2m = 4m+2 2m+2 . Now we have two summands with a maximal l. To prove 4.6, we have to show C2mx 2m n + C2m + 2x 2m+2 n = 0 for only finitely many n. But C2mx 2m n + C2m + 2x 2m+2 n = 0 implies x 2n = − C2m C2m+2 . Since x is not a root of unity, all x k are different.

4.2 Case with s

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52