The Feller-coupling getdoc3ed9. 334KB Jun 04 2011 12:04:18 AM

Since this upper bound is independent of x, we can find a k such that arg 1 − x k € −1 k+1 s k Š ∈ [−π2, π2] ∀k ≥ k and |x| r. Therefore P ∞ k=k Log 1 − x k € −1 k+1 s k Š is a holomorphic function. This proves the holomorphic- ity of f s x.

3.3.2 Extension of Z

s n x We have found in 2.5 that Z n xg = Z 1 n xg = l λ Y i=1 1 − x λ i for g ∈ C λ . We slightly reformulate this formula. Definition 3.5. Let σ ∈ S n be given. We define C m = C n m = C n m σ to be the number of cycles of length m of σ. The relationship between partitions and C m is as follows: if σ ∈ C λ is given then C n m σ = i; λ i = m . The function C n m only depends on the cycle-type and is therefore as class function on S n . We get Z n x = Z 1 n xg = n Y m=1 1 − x m C n m . 3.3 Since Re1 − x m 0, we can use this equation to extend the definition of Z s n x. Definition 3.6. We set for s ∈ C and |x| 1 Z s n x := n Y m=1 1 − x m sC n m . It is clear that Z s n x agrees with the old function for s ∈ N and is a holomorphic function in x, s for all values of C n m .

3.4 The Feller-coupling

In this subsection we follow the book of Arratia, Barbour and Tavaré [1]. The first thing we mention is Lemma 3.7. The random variables C n m converge for each m ∈ N in distribution to a Poisson-distributed random variable Y m with E Y m = 1 m . In fact, we have for all b ∈ N C n 1 , C n 1 , · · · , C n b d − → Y 1 , Y 2 , · · · , Y b n → ∞ and the random variables Y m are all independent. 1103 Proof. See [1, theorem 1.3]. Since Z n x and Z n+1 x are defined on different spaces, it is difficult to compare them. This is where the Feller-coupling comes into play. The Feller-coupling constructs a probability space and new random variables C n m and Y m , which have the same distributions as the C n m and Y m above and can be compared very well. We give here only a short overview. The details of the Feller-coupling can be found in [1, p.8]. The construction is as follows: let ξ t n t=1 be a sequence of independent Bernoulli-random variables with E ξ m = 1 m . We use the following notation for the sequence ξ = ξ 1 ξ 2 ξ 3 ξ 4 ξ 5 · · · . An m−spacing is a finite sequence of the form 1 0 · · · 0 | {z } m−1 times 1 Definition 3.8. Let C n m = C n m ξ be the number of m-spacings in 1ξ 2 · · · ξ n 1. We define Y m = Y m ξ to be the number of m-spacings in the whole sequence. Theorem 3.9. We have 1. The above-constructed C n m ξ have the same distribution as the C n m in definition 3.5. 2. Y m ξ is a.s. finite and Poisson-distributed with E Y m = 1 m . 3. All Y m ξ are independent. 4. For fixed b ∈ N we have P h C n 1 ξ, · · · , C n b ξ 6= Y 1 ξ, · · · , Y b ξ i → 0 n → ∞. Proof. See [1, p.8-10]. We use in the rest of this section only the random variables C n m ξ and Y m ξ. We therefore just write C n m and Y m for them. One might guess that C n m ≤ Y m , but this is not true. It is possible that C n m = Y m + 1. However, this can only happen if ξ n−m · · · ξ n+1 = 10 · · · 0. If n is fixed, we have at most one m with C n m = Y m + 1. We set B n m = ξ n−m · · · ξ n+1 = 10 · · · 0 . 3.4 Lemma 3.10. We have 1. C n m ≤ Y m + 1 B n m , 2. P ” B n m — = 1 n+1 , 1104 3. E ” C n m − Y m — ≤ 2 n+1 , 4. C n m does not converges a.s. to Y m . Proof. The first point follows immediately from the above considerations. The second point is a simple calculation. The proof of the third point can be found in [1, p.10]. The proof is based on the idea that Y m − C n m is more or less the number of m-spacings appearing after the n’th position. We now look at the last point. Let ξ v ξ v+1 · · · ξ v+m+1 = 10 · · · 01. We then have for 1 ≤ m ≤ m − 1 and v ≤ n ≤ v + m + 1 C n m = ¨ C v m + 1, if n = v + m , C v m , if n 6= v + m . Since all Y m ∞ a.s. and P ∞ m=1 Y m = ∞ a.s. we are done.

3.5 The limit

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52