The limit getdoc3ed9. 334KB Jun 04 2011 12:04:18 AM

3. E ” C n m − Y m — ≤ 2 n+1 , 4. C n m does not converges a.s. to Y m . Proof. The first point follows immediately from the above considerations. The second point is a simple calculation. The proof of the third point can be found in [1, p.10]. The proof is based on the idea that Y m − C n m is more or less the number of m-spacings appearing after the n’th position. We now look at the last point. Let ξ v ξ v+1 · · · ξ v+m+1 = 10 · · · 01. We then have for 1 ≤ m ≤ m − 1 and v ≤ n ≤ v + m + 1 C n m = ¨ C v m + 1, if n = v + m , C v m , if n 6= v + m . Since all Y m ∞ a.s. and P ∞ m=1 Y m = ∞ a.s. we are done.

3.5 The limit

We have Z s n x = Q n m=1 1 − x m sC n m and we know C n m d − → Y m . Does Z s n x converge in distribution to a random variable? If yes, then a possible limit is Z s ∞ x := ∞ Y m=1 1 − x m sY m . 3.5 We show indeed in lemma 3.14 that for s ∈ C fixed Z s n x d − → Z s ∞ x n → ∞. 3.6 We first show that Z s ∞ x is a good candidate for the limit. We prove that Z s ∞ x and E ” Z s ∞ x — are holomorphic functions in x, s. Since Z s ∞ x is defined via an infinite product, we have to prove convergence. The following lemma supplies us with the needed tools. Lemma 3.11. We have: 1. P ∞ m=1 Y m r m is a.s. absolute convergent for |r| 1. 2. E ”Q ∞ m=1 1 ± r m σY m — is finite for all σ ∈ R. 3. E ”Q ∞ m=1 expt α m Y m — is finite for all t ∈ R. Proof. First part: we prove the absolute convergence of the sum P ∞ m=1 Y m r m by showing lim sup m→∞ m p |Y m r m | 1 a.s. 1105 We fix an a with r a 1 and set A m := Y m r m a m = n m p |Y m r m | a o . Then P lim sup m→∞ m p |Y m r m | 1 ≥ 1 − P lim sup m→∞ m p |Y m r m | a = 1 − P ” ∩ ∞ n=1 ∪ ∞ m=n A m — = 1 − P lim supA m . We get with Markov’s inequality P • Y m  a r ‹ m ˜ ≤ E Y m € a r Š m = 1 m  r a ‹ m . Therefore P m P h Y m € a r Š m i ∞. It follows from the Borel-Cantelli-lemma that P lim supA m = 0. Second part: Case σ 0. We only have to look at the terms with a plus, since the 1 − r m σY m ≤ 1. We get with monotone convergence E   ∞ Y m=1 1 + r m σY m   = lim m →∞ E   m Y m=1 1 + r m σY m   = lim m →∞ m Y m=1 exp 1 + r m σ − 1 m ≤ lim m →∞ m Y m=1 exp ‚ 1 + r m ⌈σ⌉ − 1 m Œ . We have for ⌈ σ⌉ fixed and m big enough 1 + r m ⌈σ⌉ − 1 = r m   ⌈σ⌉ + ⌈σ⌉ X k=2 ⌈σ⌉ k r m k−1   ≤ 2⌈σ⌉r m It follows lim m →∞ m Y m=1 exp 1 + r m σ − 1 m ≤ C ∞ Y m=1 exp2⌈ σ⌉r m ∞. The constant C only depends on r and ⌈ σ⌉. Case σ 0 We only have to look at the terms with a minus sign. We have 1 − r m σY m = 1 1 − r m |σ|Y m ≤ 1 + β 3 r m |σ|Y m We can now argue as in the case σ 0. Third part: the product Q ∞ m=1 expt α m Y m is a.s. well defined, since Log ∞ Y m=1 expt α m Y m = ∞ X m=1 t α m Y m ≤ t ∞ X m=1 Y m β 1 r m ∞ a.s.. 1106 We get E   ∞ Y m=1 expt α m Y m   ≤ E   ∞ Y m=1 expt β 1 r m Y m   = ∞ Y m=1 exp ‚ e t β 1 r m − 1 m Œ . Since t β 1 r m is bounded, we can find a constant C = Cr, t with e t β 1 r m − 1 ≤ C tβ 1 r m . We get E   ∞ Y m=1 expt α m Y m   ≤ ∞ Y m=1 exp Ctβ 1 r m m ≤ exp ∞ X m=1 C t β 1 r m ∞. Now, we can prove: Lemma 3.12. Z s ∞ x is a.s. a holomorphic function in x, s. Proof. We have ∞ X m=1 Log € 1 − x m sY m Š ≤ ∞ X m=1 |sY m ||Log1 − x m | ≤ |s| ∞ X m=1 Y m | logr m | + |iϕ m | ≤ |s| ∞ X m=1 Y m β 1 + β 2 r m ∞ a.s. by Lemma 3.11. Since the sum is a.s. finite, we can find a.s. an m , such that arg € 1 − x m sY m Š ∈ [−π2, π2] for all m ≥ m . Then P ∞ m=m Log € 1 − x m sY m Š is a holomorphic function and so is Z s ∞ x. Lemma 3.13. All moments of Z s ∞ x exist. E ” Z s ∞ x — is holomorphic in x, s with E ” Z s ∞ x — = f s x. Proof. Let s ∈ K ⊂ C with K compact. Step 1: existence of E ” Z s ∞ x — . Let s = σ + i t. Then |Z s ∞ x| = ∞ Y m=1 1 − x m sY m = ∞ Y m=1 r σY m m e −t Y m ϕ m ≤ ∞ Y m=1 1 + β 3 r m |σ|Y m ∞ Y m=1 e t Y m α m . We set σ := sup s∈K |σ| and t := sup s∈K |t|. We define F r = F r, K := ∞ Y m=1 1 + β 3 r m σ Y m ∞ Y m=1 e t Y m α m . 3.7 It follows from the Cauchy Schwarz inequality for L 2 and lemma 3.11, that E [F r] is finite. Therefore E ” Z s ∞ x — exists. 1107 Step 2: the value and the holomorphicity of E ” Z s ∞ x — . We have E ” Z s ∞ x — = E   ∞ Y m=1 1 − x m sY m   = ∞ Y m=1 E ” 1 − x m sY m — = ∞ Y m=1 exp 1 − x m s − 1 m = exp ∞ X m=1 1 − x m s − 1 m . 3.8 The exchange of the product and E [..] is justified by step 1. The exchange of exp and the product is justified by the following calculation. We need Newton’s binomial series to calculate the last expression. We have 1 + x s = ∞ X k=0 s k x k for |x| 1, s ∈ C 3.9 where the sum on the right side is absolutely convergent See [6, p.26]. We get ∞ X m=1 1 − x m s − 1 m = ∞ X m=1 1 m ∞ X k=1 s k −x m k = ∞ X k=1 −1 k s k ∞ X m=1 x k m m = ∞ X k=1 −1 k+1 s k Log1 − x k . We have to justify the exchange of the two sums in the first line. We have seen in the proof of lemma 3.4 that for each a 1 there exists a constant C = Ca, K with s k C a k for k ∈ N, s ∈ K. Now choose a 1 with ar 1. We get ∞ X m=1 ∞ X k=1 1 m s k −x m k ≤ ∞ X m=1 ∞ X k=1 1 m C a k r m k = C ∞ X m=1 1 m ar m 1 − ar m ∞. Step 3: holomorphicity of E ” Z s ∞ x — . We know from step 2 and the definition of f s x that E ” Z s ∞ x — = f s x. Since we have shown in lemma 3.4 the holomorphicity of f s x, we are done. Step 4: existence of the moments. We have € Z s n x Š m = Z ms n x for each m ∈ N and Z s n x = Z s n x use e z = e z . The existence of the moments now follows from step 1.

3.6 Convergence to the limit

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52