Asymptotics for kxk getdoc3ed9. 334KB Jun 04 2011 12:04:18 AM

We now write down the generating function of E ” Z s n x — . Theorem 2.12. Let s ∈ N p and x ∈ C p . We set f s

x, t :=

Y k∈N p € 1 − x k t Š − s k −1 k with s k −1 k := p Y j=1 s j k j −1 k j . 2.10 Then E ” Z s n x — = ” f s

x, t

— n . Proof. This is 2.7 and lemma 2.11 with P x = Q p j=1 1 − x j s j . Remark: we use the convention E ” Z s x — := 1. Remark: In an earlier draft version, the above proof was based on representation theory. It was at least twice as long and much more difficult. We wish to acknowledge Paul-Olivier Dehaye, who has suggested the above proof and allowed us to us it. Corollary 2.12.1. For n ≥ 1, p = s = 1, we have that E Z n x = 1 − x. 2.11 Proof. 1 − x t 1 − t = ∞ X n=0 t n − x t ∞ X n=0 t n = 1 + 1 − x ∞ X n=1 t n

2.4 Asymptotics for kxk

1 Theorem 2.13. Let s ∈ N p and x ∈ C p with k xk 1 be fixed. Then lim n→∞ E ” Z s n x — = Y k∈N p \{0} € 1 − x k Š − s k −1 k . 2.12 There is no problem of convergence in the RHS of 2.12 since by definition s k −1 k 6= 0 only for finitely many k ∈ N p \ {0}. There exists several ways to prove this theorem. The proof in this section is a simple, direct compu- tation. In section 3, we extend theorem 2.13 to complex s and prove it with probability theory. The third way to prove this theorem is to use the theorems IV.1 and IV.3 in [5] which base on function theory. We now prove theorem 2.13 with theorem 2.12 and Lemma 2.14. Let a, b ∈ N and y 1 , · · · , y a , z 1 , · · · , z b be complex numbers with max | y i |, |z i | 1. Then lim n→∞   1 1 − t Q a i=1 1 − y i t Q b i=1 1 − z i t   n = Q a i=1 1 − y i Q b i=1 1 − z i . 1098 Proof. We show this by induction on the number of factors. For a = b = 0 there is nothing to do, since h 1 1−t i n = 1. Induction a, b → a + 1, b. We set gt := 1 1 − t Q a i=1 1 − y i t Q b i=1 1 − z i t , γ := Q a i=1 1 − y i Q b i=1 1 − z i . We know by induction that lim n→∞ [gt] n = γ. We get lim n→∞   1 1 − t Q a+1 i=1 1 − y i t Q b i=1 1 − z i t   n = lim n→∞ gt1 − y a+1 t n = lim n→∞ gt n − lim n→∞ y a+1 gt n−1 = 1 − y a+1 γ = Q a+1 i=1 1 − y i Q b i=1 1 − z i . Induction a, b → a, b + 1. This case is slightly more difficult. We define gt and γ as above and write for shortness z = z b+1 . We have   1 1 − t Q a i=1 1 − y i t Q b+1 i=1 1 − z i t   n = gt 1 − z t n =   gt ∞ X k=0 z t k   n = n X k=0 z k gt n−k . Let ε 0 be arbitrary. Since gt n → γ, we know that there exists an n ∈ N with gt n − γ ε for all n ≥ n . We have n X k=0 z k gt n−k = n−n X k=0 z k gt n−k + n −1 X k=0 z n−k gt k . Since |z| 1, the second sum converges to 0 as n → ∞. But n−n X k=0 γz k − n−n X k=0 gt n−k z k ≤ |ε| n−n X k=0 z n−k ≤ ε 1 − |z| . Since ε was arbitrary, we are done. Corollary 2.14.1. For each s ∈ N and x ∈ C with |x| 1, we have lim n→∞ E ” |Z n x| 2s — = s Y k=1 1 − |x| 2k − s k 2 Y 0≤k 1 k 2 ≤s 1 − x k 1 x k 2 s k1 s k2 −1 k1+k2+1 2 . Proof. It follows immediately from 2.5, that Z n x = Z n x. We put p = 2, s 1 = s 2 = s, x 1 = x and x 2 = x. Remark: the corollary is in fact true for all s ∈ R. One simply has to replace theorem 2.13 by theorem 3.1 see section 3 in the proof. 1099 3 Holomorphicity in s This section is devoted to extend theorem 2.13 to s ∈ C p . We do this by showing that all functions appearing in theorem 2.13 are holomorphic functions in

x, s for kxk

Dokumen yang terkait

AN ALIS IS YU RID IS PUT USAN BE B AS DAL AM P E RKAR A TIND AK P IDA NA P E NY E RTA AN M E L AK U K A N P R AK T IK K E DO K T E RA N YA NG M E N G A K IB ATK AN M ATINYA P AS IE N ( PUT USA N N O MOR: 9 0/PID.B /2011/ PN.MD O)

0 82 16

ANALISIS FAKTOR YANGMEMPENGARUHI FERTILITAS PASANGAN USIA SUBUR DI DESA SEMBORO KECAMATAN SEMBORO KABUPATEN JEMBER TAHUN 2011

2 53 20

EFEKTIVITAS PENDIDIKAN KESEHATAN TENTANG PERTOLONGAN PERTAMA PADA KECELAKAAN (P3K) TERHADAP SIKAP MASYARAKAT DALAM PENANGANAN KORBAN KECELAKAAN LALU LINTAS (Studi Di Wilayah RT 05 RW 04 Kelurahan Sukun Kota Malang)

45 393 31

FAKTOR – FAKTOR YANG MEMPENGARUHI PENYERAPAN TENAGA KERJA INDUSTRI PENGOLAHAN BESAR DAN MENENGAH PADA TINGKAT KABUPATEN / KOTA DI JAWA TIMUR TAHUN 2006 - 2011

1 35 26

A DISCOURSE ANALYSIS ON “SPA: REGAIN BALANCE OF YOUR INNER AND OUTER BEAUTY” IN THE JAKARTA POST ON 4 MARCH 2011

9 161 13

Pengaruh kualitas aktiva produktif dan non performing financing terhadap return on asset perbankan syariah (Studi Pada 3 Bank Umum Syariah Tahun 2011 – 2014)

6 101 0

Pengaruh pemahaman fiqh muamalat mahasiswa terhadap keputusan membeli produk fashion palsu (study pada mahasiswa angkatan 2011 & 2012 prodi muamalat fakultas syariah dan hukum UIN Syarif Hidayatullah Jakarta)

0 22 0

Pendidikan Agama Islam Untuk Kelas 3 SD Kelas 3 Suyanto Suyoto 2011

4 108 178

ANALISIS NOTA KESEPAHAMAN ANTARA BANK INDONESIA, POLRI, DAN KEJAKSAAN REPUBLIK INDONESIA TAHUN 2011 SEBAGAI MEKANISME PERCEPATAN PENANGANAN TINDAK PIDANA PERBANKAN KHUSUSNYA BANK INDONESIA SEBAGAI PIHAK PELAPOR

1 17 40

KOORDINASI OTORITAS JASA KEUANGAN (OJK) DENGAN LEMBAGA PENJAMIN SIMPANAN (LPS) DAN BANK INDONESIA (BI) DALAM UPAYA PENANGANAN BANK BERMASALAH BERDASARKAN UNDANG-UNDANG RI NOMOR 21 TAHUN 2011 TENTANG OTORITAS JASA KEUANGAN

3 32 52